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ABSTRACT 
 
 

Pancreatic cancer is one of the deadliest cancers with a five-year survival rate of 

6%. Pancreatic cancer is resistant to conventional chemotherapy and is usually 

diagnosed at late stages. Current treatment options have minimal effects in extending 

patients’ lives beyond 10 months. One significant limitation in developing treatments to 

combat pancreatic cancer is its immunosuppressive microenvironment. Pancreatic 

cancer secretes factors that activate immunosuppressive cells, such as regulatory T 

cells (Tregs). These Tregs suppress effector CD4+ and CD8+ T cell anti-tumor immune 

responses. Therefore, novel treatment options to reduce Treg-mediated immune 

suppression and increase the numbers and functions of CD4+ and CD8+ T cells are 

paramount to enhance anti-tumor immunity in pancreatic cancer tumor-bearing (TB) 

hosts. 

 The alternatively spliced transcription factor Ikaros is essential for lymphocyte 

development and is considered a tumor suppressor in T cells. Ikaros’ protein stability 

and function are regulated by its phosphorylation and dephosphorylation by protein 

kinase CK2 and phosphatase 1 (PP1), respectively. Mutations and functional 

inactivation of Ikaros have mainly been investigated in T cell leukemias and lymphomas. 

In this dissertation, we investigated the role of Ikaros in regulating T cell homeostasis in 

murine pancreatic cancer.  
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In this study, we report that Ikaros proteins are degraded by the ubiquitin-

proteasome pathway in response to factors produced by murine pancreatic cancer cells. 

Our results further suggest that an increase in CK2 activity leads to Ikaros’ degradation 

and disrupts its localization to pericentromeric heterochromatin in our murine pancreatic 

TB model. This loss of Ikaros expression is accompanied by an imbalance in T cell 

homeostasis. More specifically, we observe a significant decrease in effector CD4+ and 

CD8+ T cells but an increase in Treg percentages in TB and spontaneous pancreatic 

cancer models. T-cell specific defects in Ikaros protein expression were also observed 

in TB CD3+ T cells. Apigenin, a natural plant flavonoid and CK2 inhibitor, restored 

expression of some Ikaros isoforms in our TB model. Apigenin also displayed 

immunological benefits evident by enhanced anti-tumor immunity in TB mice. These 

data provide mechanistic and functional evidence that pharmacological inhibition of CK2 

can regulate Ikaros expression and identifies the possible involvement of Ikaros in 

regulating T cell immune responses in murine pancreatic cancer.  
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CHAPTER ONE 

INTRODUCTION 

 

An Overview of Pancreatic Cancer 

Pancreatic adenocarcinoma (PDAC) makes up approximately 85-95% of 

pancreatic cancer occurrences and is the fourth leading cause of cancer-related deaths. 

It is one of the most lethal cancers and is the only major cancer with a five-year relative 

survival rate in the single digits of approximately 6% (1-3) (Figure 1.1).  Typically, 

patients are 60-80 years of age and PDAC is twice as prevalent in males than females 

(4, 5). Most PDAC is prevalent in the head of the pancreas, followed by the body and 

the tail (4, 6). In approximately 90% of cases, oncogenic mutations in Kras (G12D) drive 

PDAC initiation by causing the development of pancreatic intraepithelial neoplasia 

(PanIN) lesions (8, 9). However, the minimal spontaneous progression of precursor 

lesions to invasive PDAC has suggested that additional genetic mutations are 

necessary for PDAC disease progression (8). In fact, studies have shown that 

cooperative inactivating mutations in the tumor suppressor genes Cdkn2a, Trp53, or 

Dpc4/Smad4 accelerate the development of PanINs and PDAC in Kras mouse models 

and in humans (8, 17, 18) (Figure 1.2). Currently, surgery is the only cure, and 

increases the survival rate to 20% (4, 5). Unfortunately, PDAC is unresectable in 75% of 

patients (20). Lack of early detection contributes to a high incidence of metastasis at 
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diagnosis in 80% of patients (21). Resistance to chemo- and radiation- therapies also 

contributes to the lethality of this disease (22, 23). The chemotherapeutic drug 

gemcitabine is the standard treatment for advanced pancreatic cancer which has 

minimal effects on survival rates (1). Immunotherapies, vaccines and other 

immunomodulatory drugs have shown limited success in treating PDAC (24). 

 

 

Figure 1.1. 2014 Five-Year Relative Survival Rates of the Top Five Causes of 
Cancer Death. Pancreatic cancer is currently the only top-five cancer in terms of 
death, with a five-year survival rate in the single digits at 6 percent. Note. Reprinted 
from the Pancreatic Cancer Action Network; Source: American Cancer Society, 
Cancer Facts and Figures 2014. ©2014 Pancreatic Cancer Action Network. 
Reprinted with permission.  
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 Immune Responses in Pancreatic Cancer 

Immune surveillance is the necessity of the immune system to detect and destroy 

tumors in a host (25).  However, pancreatic cancer has employed a number of 

strategies to avoid and escape immune surveillance and is considered a 

‘nonimmunogenic’ tumor (24). In particular, the absence of effective immune responses 

to pancreatic cancer is a major contributing factor to its poor prognosis. The immune 

cells in pancreatic cancer promote a local and systemic immunosuppressive 

microenvironment marred by the presence of inflammatory mediators, tumor-associated 

macrophages (TAMs), regulatory T cells (Tregs) and myeloid derived suppressor cells 

(MDSC) that inhibit innate and adaptive anti-tumor immune responses, especially that of 

T cells, leading to tumor progression (10, 26) (Figure 1.3).  

 

Figure 1.2. Genetic and histological changes of pancreatic ductal 
adenocarcinoma (PDAC). Kras activation leads to the development of pancreatic 
intraepithelial neoplasias (PanINs). Subsequent inactivation of cyclin-dependent 
kinase inhibitor 2A (Cdk2na), tumor protein 53 (TP53) and Smad4 further contribute 
to the progression of PanIN lesions and ultimately the development of PDAC and its 
invasion and metastasis. Green arrow – oncogene; red arrows- tumor suppressor 
genes. Percentages represent occurrence. Note. Reprinted from “KRAS: feeding 
pancreatic cancer proliferation” by Bryant et al., 2014,Trends Biochem Sci., 39, 
pg.91-100. Copyright © 2013 Elsevier Ltd. Reprinted with permission (7).  
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 In pancreatic cancer patients, elevated Treg numbers are present both in the 

circulation and tumor site (27, 28) while effector T cells are scarce and have diminished 

functions (10). More so, increased Treg numbers correlate with worse survival (29) and 

a reduction in effector CD8+ T cell numbers (28). Higher Treg:Teff ratios have been 

shown to indicate better prognosis in PDAC (30). Treg inhibitors, including cytotoxic T-

Figure 1.3. Immune Evasion in PDAC. During the induction phase, mutations in 
ocogenes and tumor suppressor genes drive the development of PanIN lesions. In 
the inflammation stage, PanIN lesions secrete soluble factors that lead to the 
recruitment of inflammatory cells. This causes immunosuppression marked by the 
infiltration of tumor-associated macrophages (TAMs), regulatory T cells (Treg) and 
myeloid derived suppressor cells (MDSC) that eventually suppress adaptive immune 
responses –NK cells, CD4+ T cells and CD8+ T cells  - through direct contact or the 
production of immunosuppressive cytokines. This ultimately leads to immune 
privilege and the progression to pancreatic ductal adenocarcinoma. Note. Reprinted 
from “Immunosurveillance of pancreatic adenocarcinoma: Insights from genetically 
engineered mouse models of cancer ” by Clark et al., 2009, Cancer Lett., 279, pg.1-
7. © 2008 Elsevier Ireland Ltd. Reprinted with permission (10). 
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lympocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) receptor, which are 

effective in other cancers, have shown no activity in PDAC (31-33). Therefore, 

identifying novel mechanisms that can potentially restore T cell homeostasis, thereby 

increasing Treg:Teff ratios, is essential in overcoming defects in the immune system 

that promote pancreatic cancer tumor progression and impede the success of treatment 

strategies.  

 

Hematopoiesis and Lymphocyte Development 

Hematopoiesis, which occurs during embryonic development and adulthood, 

refers to the collective process involving the formation, development and differentiation 

of blood and immune cells (34) from pluripotent hematopoietic stem cells (HSCs) (35). 

Hematopoeisis functions to replenish short-lived blood and immune cells and occurs 

mainly in the bone marrow (36). HSCs can either self-renew or go on to produce 

daughter cells that become either common myeloid progenitor (CMP) or common 

lymphoid progenitor (CLP) cells. These cells further differentiate into erytrhoid, lymphoid 

and myeloid lineages. More specifically, CMPs generate granulocyte/macrophage 

precursors (GMPs) that produce granulocytes, macrophages/monocytes (includes 

dendritic cells (DCs)) and osteoclasts and megakaryocyte/erythroid precursors (MEP) 

that produce megakaryocytes, platelets and erytrhoid cells. These cells of the myeloid 

lineage mainly form components of innate immunity (36). CLPs give rise to lymphoid 

cells including natural killer (NK) cells, B cells and T cells (35), responsible for the innate 

and adaptive immune response (36) (Figure 1.4). Therefore, studying the mechanisms 
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that govern hematopoiesis and thus, immune cell development and differentiation, may 

provide insight into the development of blood disorders and cancers (37). 

 

 

 

 

Figure 1.4. Hematopoiesis. Representation of the process of hematopoiesis through 
which blood and immune cells develop. Hematopoietic stem cells (HSCs) can self-renew 
or differentiate into common myeloid progenitors (CMP) or common lymphoid 
progenitors (CLP). CMPs then become either megakaryocyte/erythroid precursors 
(MEP) or    granulocyte/macrophage precursors, which can develop into erythrocytes 
and platelets and neutrophils, eosinophils, basophils, monocytes/macrophages, 
respectively. CLPs differentiate into B cell precursors (BCP), NK cell precursors (NKP) 
and T cell precursors (TCP) giving rise to B cells, NK cells and T cells. Arrow – self 
renewal.  
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Antigen-Presenting Cells 

Antigen-Presenting Cells (APCs) are a population of immune cells that process 

and present antigens to stimulate the activation of mature T cells (38). Dendritic cells, 

macrophages and B cells are considered ‘professional’ APCs (39). Dendritic cells are 

the most potent APCs as they express high levels of major histocompatibility (MHC) and 

co-stimulatory molecules (40). APCs internalize and degrade proteins into peptides, 

load these peptides to MHC class I molecules for CD8+ T cells and MHC II for CD4+ T 

cells. These peptides are recognized by T cell receptors (TCR) on T cells (41). APCs 

also express co-stimulatory molecules, which provide a second signal for T cell 

activation. Such co-stimulatory molecules include B7 that binds to CD28 on T cells (42). 

Therefore, defects in APC development and function can negatively impact T cell 

immunity (38). 

 

T cells 

T cells are the main cellular players responsible for eliciting robust adaptive 

immune responses to foreign pathogens and regulating immune tolerance to self-

antigens (43). T cells are divided into a number of subsets with distinctive properties 

and roles. The two major subsets of peripheral T cells are characterized by their 

expression of CD4 and CD8 coreceptor molecules (44). CD4+ and CD8+ T cells develop 

in the thymus and originate from double-positive thymocytes expressing both CD4 and 

CD8 molecules (45). T cells express a T Cell Receptor (TCR) that recognizes antigens 

presented by antigen-presenting cells (APC). The TCR of CD4+ T cells are MHC class II 

restricted while CD8+ T cells are MHC class I restricted. CD4+ and CD8+ T cells become 
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activated through their TCR receptors and costimulatory molecules, specifically CD28, 

which leads to their proliferation, cytokine production, survival and function (41). CD4+ 

and CD8+ T cells are critical regulators of immunosurveillance (46) as they are capable 

of eliciting robust immune responses to eradicate various disease states (47). T cells 

are found in lymphoid tissues and circulate via the bloodstream to identify and destroy 

foreign, diseased cells. Therefore, T cells are important playes in cellular immunity 

against cancers (48). However, the tumor microenvironment utilizes a number of 

strategies that inhibit T cells (47).  Therefore, mechanisms that can facilitate effective 

activation, development and function of T cells are essential for effective anti-tumor 

immune responses (49) 

 

CD4+ T Cells. CD4+ T cells play a critical role in antibody-mediated immunity and 

activating and expanding CD8+ T cells and CD8+ memory T cells, characteristic of its 

“helper” cell phenotype (48). Historically, CD4+ T cells were shown to activate CD8+ T 

cells by the production of IL-2 (48) and the activation of dendritic cells to stimulate CD8+ 

T cells (50). More recently, studies also suggest that CD4+ T cells use CD40/CD45 

binding to directly interact with CD8+ T cells (51). The number and cytotoxic function of 

CD8+ T cells are significantly increased in the presence of CD4+ T cells. CD4+ T cell 

depletion favors tumor progression and reduces survival of tumor-bearing hosts, 

highlighting its significance in maintaining CD8+ T cell function (48, 52, 53).  As a result, 

diminished CD8+ T cell antitumor responses may be due to insufficient CD4+ T cell 

activation.  Apart from this “helper” role, CD4+ T cells have also been shown to possess 

tumor-reactive abilities. These CD4+ T cells develop cytotxic activity, which can cause 
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tumor rejection by recognizing MHC-II antigens on tumor cells (54, 55) facilitated by 

their production of IFN-γ and TNF-α (56, 57).   CD4+ helper T cells are further 

characterized into subsets whose generation, cytokine secretion, function and 

differentiation are regulated by specific “master” transcription factors (45). The three 

main helper T cell subsets are Th1, Th2 and Th17 cells. Regulatory T cells (Tregs) are 

another unique subset of CD4+ T cells that maintain peripheral tolerance and cause 

immune suppression (58). Th1 cells fight intracellular pathogens. These cells express 

the transcription factor T-bet and immediate immune responses by producing IFN-γ, 

which can activate macrophages (45). Th2 cells fight extracellular parasites and 

express the transcription factor GATA-3 that regulates its production of IL-4, IL-5 and IL-

13 (45).  In addition, both of these cells have roles in antitumor immunity. Th1 cells 

prevent blood vessel formation and recruit CD8+T and NK cells, which both have the 

ability to kill tumors. Th2 cell production of IL-4 and IL-13 recruits eosinophils while IL-5 

production promotes tumorigenesis (59). Th17 cells express the transcription factor 

RORγ and produce the cytokines IL-17 and IL-21 (59).  Th17 have inflammatory 

properties and play a role in autoimmune diseases. Limited production of IL-17 has 

been reported to aid in cancer progression (60).  

 

CD8+ T cells. CD8+ T cells are critical for controlling and eliminating viral 

infections and tumor cells (61). CD8+ T cells recognize and respond to these foreign 

antigens via MHC-I molecules expressed on infected cells or antigen presenting cells 

(APCs) (62). Apart from TCR and CD28 engagement, the production of inflammatory 

cytokines such as IL-12 and type I interferon, by immune cells, further facilitates CD8+ T 
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cell accumulation and differentiation (62). Memory phenotype of CD8+T cells after 

exposure to antigen stimulation results in host protection to future exposure (63).  

In instances of autoimmunity, self-reactive lymphocytes cause destruction of 

normal tissues. These autoreactive T cells are usually deleted during negative selection 

in the thymus but sometimes evade this process (64-69), This is where peripheral 

tolerance is crucial in restricting these autoimmune responses. However, CD8+ T cell 

self-tolerance can also lead to defective anti-tumor immune responses as many tumor 

cells express self-antigens (70).  

The ability of CD8+ T cells to destroy and eliminate infected or tumor cells is 

referred to as their cytotoxic ability. CD8+ cytotoxic T cells (CTLs) kill target cells by 

inducing apoptosis or cell death mediated by calcium-dependent release of granules in 

response to antigen recognition of the target cell. These granules contain two types of 

cytotoxic proteins stored in an active form but do not become functional until their 

release. Perforin is one of these cytotoxic proteins that polymerizes, forming pores in 

the membranes of target cells, allowing salt and water to end and leading to cell death. 

The other cytotoxic protein, granzyme, consists of three serine proteases that activate 

apoptosis in the cytoplasm of the target cell by caspase cleavage (71). CTLs can also 

induce apoptosis using perforn-independent mechanisms that involve the expression of 

Fas ligand (also expressed on Th1 cells) that can bind Fas in the target cell membrane. 

CTLs also produce IFN-γ, which can increase MHC-I expression on target cells and 

activate macrophages in conjunction with TNF-α and TNF-β. Cells undergoing 

programmed cell death or apoptosis have exposed phosphatidylserine on their cell 

membranes which allow their recognition and ingestion by phagocytes ((71). Current 
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research is extensively focused on therapeutic techniques to eradicate tumor cells. 

These mainly involve using the host’s immune system, especially targeting T cells to 

increase their cytotoxic abilities, survival and migration to tumor sites (47, 63).  

 

Regulatory T Cells. Regulatory T cells (Tregs) are characterized as a T cell 

population that can functionally suppress an immune response by influencing the 

activity of another cell type. Treg percentages are increased in the peripheral blood and 

tumor microenvironment of cancer patients including patients with pancreatic 

adenocarcinomas (72). Tregs are primarily involved in inducing and maintaining 

peripheral T cell tolerance to self-antigens (73). In tumors, activation of Tregs is 

considered one of the main tumor escape mechanisms (74). Tregs dampen T cell 

immunity to tumor-associated antigens and therefore, serve as the main obstacle to 

successful immunotherapy and active vaccination in tumor- bearing hosts (75, 76).  

Tregs can negatively affect CD4+ and CD8+ T cell numbers and function (63, 77, 78). 

Therefore, Treg-mediated suppression of immune responses leads to immune tolerance 

of tumor cells. Therefore, the ability to control Tregs is crucial to the development of 

effective immunotherapy strategies for treating cancer patients (79). 

Classical Tregs are thymus-derived CD4+CD25+FoxP3+ T cells. However, there 

are several phenotypically distinct subsets of Tregs including natural (nTregs) and 

induced Tregs (iTregs). The classical Tregs are mainly nTregs that originate in the 

thymus and suppress via cell-cell contact mechanisms (90). Alternatively, iTregs consist 

of type I regulatory T cells (TR1) (CD4+IL-10+FoxP3-), which originate in the periphery 

and suppress through the production of IL-10 (91). T helper types 3 (TH3) (CD4+TGF-
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β+) Tregs are another subset of iTregs that suppress though TGF-β-dependent 

mechanisms (92). TGF-β induces FoxP3 expression in CD4+CD25- T cells, which leads 

to the accumulation of CD4+CD25+ T cells with Treg suppressive functions (93). 

FoxP3 is a transcription factor that serves not only as a key intracellular marker 

of Tregs but is also critical for their development and function (80, 81). The suppressive 

function of Tregs is mediated by FoxP3 transcriptional regulation of a number of 

important Treg genes including the activation of CTLA-4 and glucocorticoid-induced 

tumor necrosis factor receptor (GITR) and the repression of T effector cytokine genes, 

IL-2 and IFN-γ (74, 82-84). Tregs suppress anti-tumor immune responses via a variety 

of mechanisms. Tregs may indirectly inhibit the activation of effector T cells by inhibiting 

the maturation and function of dendritic cells via co-stimulatory molecule CTLA-4 and 

lymphocyte-activation gene 3 (LAG-3) binding to CD80/86 and MHC II on DCs, 

respectively. This results in DC production of immunosuppressive indoleamine 2,3-

dioxygenase (IDO) (85, 86). Tregs can also directly inhibit CD4+ and CD8+ T cells via 

cell-to-cell contact and the production of inhibitory cytokines including interluekin-10 (IL-

10) and transforming growth factor beta (TGF-β) (87, 88). In addition, Tregs can also 

induce cytolysis of effector CD4+ and CD8+ T cells by producing perforin and granzymes 

that induce apoptosis (89).  Tregs have also been shown to directly suppress effector T 

cells by transferring the inhibitory second messenger cyclic AMP (cAMP) into these 

cells using membrane gap junctions (90). In turn, effector T cell production of IL-2 can 

contribute to Treg suppressive function (91) and IL-10 and TGF-β can induce Tregs (92, 

93) (Figure 1.5). 
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Transcription Factors and Hematopoiesis 

Transcription factors are regulators of gene expression and can include 

oncogenes and tumor suppressor genes (94). Transcription factors play a key role in 

Figure 1.5 A representation of the mechanisms by which regulatory T cells 
(Treg) suppress anti-tumor immune responses. Tregs cause the inactivation of 
antigen presenting cells (APC), especially dendritic cells (DC), causing them to 
produce indoleamine 2,3-dioxygenase (IDO). IDO inhibits the proliferation of effector 
CD4/CD8+ T cells. Tregs can also directly inhibit CD4/CD8+ T cells via cell-to-cell 
contact, the production of IL-10 and TGF-β, the cooperative activities of perforin and 
granzymes and cyclic AMP (cAMP) transfer. Overall, this results in the inability of 
CD4/CD8+ T cells to generate effective immune responses against tumors via the 
production of IFN-γ by CD4+ T cells to activate CD8+ T cells as well as by perforin 
and granzyme production by CD8+ T cells to cause apoptosis of tumor cells. Note. 
Modified from “Advances in Immune Regulation in Transplantation by Aldopgan, 
2013, Discovery Medicine,15, pg.150-159. Copyright 2014 Discovery Medicine (16). 
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regulating hematopoetic cell fate decisions by regulating lineage-specific genes (95). In 

addition, master transcription factors also determine the fate of terminally differentiated 

or mature cells (96). These transcription factors work in concert with each other, 

epigenetic regulators and other regulatory elements within the genome to form  “gene 

regulatory networks”. Dysregulation of these gene regulatory networks by transcription 

factor overexpression, mutations, deletion or oncogenic fusions may therefore lead to 

malignant phenotypes (95).  

 

An Overview of the Ikaros Family 

The Ikaros family consists of five transcription factors – Ikaros, Helios, Aiolos, 

Pegasus and Eos – that are important regulators of hematopoiesis, especially lymphoid 

differentiation, proliferation and function (35, 97-99). These transcription factors interact 

with a complex network of gene-regulatory elements, other family members and a 

number of transcriptional regulators to control gene expression primarily via the 

recruitment of chromatin remodeling complexes (35). All family members share a similar 

Kruppel-type zinc-finger protein structure with four amino-terminal zinc fingers and two 

carboxy-terminal zinc finger motifs (35, 100-102).  The carboxy-terminal zinc finger 

motifs encode the DNA binding domain (DBD) while those at the amino-terminal form 

the dimerization domain allowing interactions with self, family members and 

transcriptional regulators (35). Ikaros family proteins also have a bipartite activation 

domain adjacent to the carboxy-terminal zinc fingers, which stimulates basal 

transcriptional activation of target genes (103-105) (Figure 1.6). Ikaros, Aiolos, Helios 

and Eos contain four amino-terminal zinc finger motifs and all recognize the canonical 
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sequence “GGAAA” (35, 106), while Pegasus, which only contains three amino-terminal 

zinc finger motifs recognizes a “GNNNGNNG” sequence (107). Alternative splicing 

produces various isoforms of Ikaros family members with varying number of amino-

terminal zinc finger mofits, which allow for functional differences in their DNA binding 

affinities (35). Isoforms containing less than three amino-terminal zinc finger domains in 

the DBD do not bind DNA and are considered dominant negative (DN) isoforms that are 

defective and can inhibit the activity of functional isoforms (101). Ikaros and Aiolos are 

the most highly conserved family members and are typically expressed in lymphoid 

tissues along with Helios. As a result, deregulated expression of these family members 

has been implicated in leukemias and lymphomas. Ikaros expression has also been 

detected in the brain and pituitary (108). Eos is more broadly expressed but its function 

has not been fully investigated. Pegasus, the most divergent family member, is also 

widely expressed with unknown functions (35). 

 

An Overview of Ikaros 

Dr. Katia Georgopoulous’ group first isolated the Ikaros gene in 1992 during 

studies aimed at identifying transcription factors that control commitment to the T cell 

lineage (108). The Ikaros contains eight exons, an untranslated exon 1 seven translated 

exons (exon 2 to 8). Alternative splicing of the Ikaros gene gives rise to eight isoforms 

(Ik1-Ik8). Ikaros protein contains four zinc finger N-terminus DNA binding motifs and two 

C-terminus zinc fingers important for dimerization with an activation/repression domain 

(Figure 1.6).  
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Ik1, Ik2 and Ik3 contain at least three N-terminal zinc fingers in the DBD and therefore 

bind DNA at the “GGAAA” motif. Ik-4 only contains two N-terminal zinc fingers binds 

tandem recognition sites that include this sequence. Ik5, Ik6, Ik7 and Ik8 contain one or 

no N-terminal zinc fingers and therefore do not bind DNA Facilitation of homo– and 

heterodimer complexes through the conserved c-terminal zinc finger motifs allow for 

interactions of various Ikaros isoforms. The formation of such complexes between 

functional isoforms with N-terminal DNA-binding capabilities (i.e., Ik1, Ik2 and Ik3) 

increases their DNA affinities and transcriptional activities. Opposingly, complexes 

consisting of DN isoforms with these functional isoforms cannot bind DNA and are 

transcriptionally inactive (109). Functional Ik-1 and Ik-2 are the most highly expressed 

isoforms throughout development (106, 110). Subsequent mouse studies showed that 

Figure 1.6. A schematic of the Ikaros-1 (Ik-1) protein and its features. Ikaros’ 8 
exons, including the untranslated exon 1 are depicted. Bars represent zinc fingers, F. 
Ik-1 has a DNA-binding domain (DBD) at its N-terminus characterized by the 
presence of four zinc finger motives. Ik-1 also has a bipartite activation/repression 
domain in exon 7. At the C-terminus, Ik-1 contains two zinc finger motifs that form its 
dimzerization domain. Note. Modified with permission from “Ikaros transcription 
factors: flying between stress and inflammation” by Chrousos et al, 2005, JCI,115, 
pg.844-848. Copyright © 2005, American Society for Clinical Investigation (14). 
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Ikaros is in fact required for lymphocyte development. Ikaros knockout mice (deletion of 

C-terminal resulting in functional inactive proteins that are rapidly degraded) lack B cells 

and their precursors as well as fetal T cells but their T cells develop normally after birth 

with increased CD4+ T cells detected in the thymus (111). These Ikaros knockout mice 

also display defects in NK cells and dendritic cells (112-115). Mice expressing a DN 

form of Ikaros that is still able to dimerize with other Ikaros family members, exhibit 

more severe defects including the absence of T cells after birth which results in severe 

infections and death (105). Additionally, mice with one disrupted and one functional 

copy of Ikaros (+/-) dislplay hyperproliferative T cells responses and develop T cell 

malignancies (116). The less marked phenyotypes observed in the Ikaros knockout 

mutants are thought to reflect the functional redundancies of the Ikaros family members 

as the presence of other family members may compensate for the lack of Ikaros (35, 

111). On the contrary, the DN Ikaoros mutants produce functional proteins that may 

inactivate Ikaros itself and other family members (35, 105). 

Studies by Schjerven et al aimed at identifying the role of individual zinc finger 

motifs of the Ikaros protein in regulating its transcriptional activity in lymphopoiesis and 

leukemogenesis (117). They found that Ikaros zinc fingers 2 and 3 mediate its DNA 

binding activity to its core consensus sequence while zinc fingers 1 and 4 bind to other 

specific sites (106, 118, 119). They generated mice lacking exons encoding Ikaros zinc 

fingers 1, which lacked full-length Ikaros protein, only expressing an alternatively spliced 

Ikaros isoform. They also generated mice lacking Ikaros zinc finger 4 which expressed 

mutant forms of both isoforms. These studies revealed that these zinc finger regions 

have distinct biological functions. Zinc finger 1 was found to be important for B cell 
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development while zinc finger 4 was mainly important for natural killer cell, dendritic and 

T cell development. Mice lacking zinc finger 4 developed thymic lymphomas, which, 

suggest that this motif is responsible for Ikaros’ tumor suppressor activity. Overall, their 

studies show that zinc fingers 1 and 4 help Ikaros to recognize different DNA sequences 

but that the genes that are differentially targeted in the absence of either of these zinc 

finger motifs are few, suggesting that effects of Ikaros are mediated by its regulation of 

a small number of target genes (106, 118, 119). 

 

Ikaros Expression. Ikaros expression was found to be primarily restricted to 

embryonic, fetal and adult hematopoietic cells. Ikaros mRNA is expressed in the 

developing embryo especially in the blood islands of the E8 yolk sac, mesodermal cells 

in the embryo proper and the fetal liver at E9.5 (97, 109). Ikaros is also expressed in the 

fetail thymus from E10.5, which coincides with the presence of fetal lymphoid 

precursors (97, 109).  Within the bone marrow, Ikaros expression is first detected in 

pluripotent, self-renewing hematopoietic stem cells (HSC) and then in precursor myeloid 

and lymphoid cells (110, 120, 121). Subsequently, Ikaros expression is downregulated 

in mature monocytes, macrophages and erythrocytes but its expression is still 

detectable in granulocytes (121). On the contrary, Ikaros expression is upregulated in 

thymocyte precursors and is maintained at high levels in mature T cells in both fetuses 

and adults. Ikaros upregulation is also observed during B-cell differentation (110). 

Overall, Ikaros expression is highest in double positive thymocytes and is highly 

expressed in mature T and B-lymphocytes as well as natural killer (NK) cells (108). 
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Therefore, it is apparent that Ikaros is especially critical for proper development, 

differentiation and homeostasis of lymphoid cells (122). 

 

Ikaros and Hematological Malignancies. In humans, mutations in the IKZF1 

gene encoding Ikaros and overexpression of DN isoforms often occur in many different 

types of leukemias such as acute lymphoblastic leukemias (ALLs), acute myeloid 

leukemia (AML) and chronic myeloid leukemia (CML) (123-126). These findings suggest 

that Ikaros may function as a tumor suppressor in human leukemias. Ikaros variants are 

also overexpressed in lymphomas such as histiocytic lymphoma, Burkitt lymphoma, 

anaplastic large cell lymphoma and non-Hodgkin lymphoma (127-129). Orozoco et al 

(2013), showed that in cases of overexpression of Ikaros DN isoforms, there is also 

reduced expression of functional isoforms, suggesting that the overexpression of DN 

isoforms is not directly responsible for malignant phenotypes but moreso, the imbalance 

of the various isoforms, especially since DN isoforms are expressed in healthy 

individuals (130). 

  

Ikaros and Solid Cancers. Little is known about the involvement of Ikaros in 

tumor development in solid cancers. Using microarray analyses, one study in particular 

has shown that Ikaros is widely expressed in solid tumors such as bladder, blood, 

breast, colorectal, gliomas, head and neck, lung, ovarian and skin cancers. Moreover, 

this study reported a correlation between Ikaros expression and the prognoses of 13 

cancers including breast, lung, ovarian and skin cancers (131). In addition, Ikaros has 

been implicated in regulating the expression of genes that control the epithelial to 
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mesenchymal (EMT) transition process in ovarian cancer cells (132). Ikaros has also 

been shown to regulate the migration and invasion of lung cancer cells (133). Overall, a 

detailed understanding of the function of Ikaros in solid tumors is yet to be defined.  

 

Ikaros and Gene Regulation. Ikaros can both activate and repress gene 

expression, primarily via chromatin remodeling mechanisms (100, 101, 134).  In resting 

lymphocytes, Ikaros is localized to the nucleus in what is described as a diffuse, dot-like 

pattern. However, as it becomes activated, Ikaros takes on a ring-shaped tortoid 

structure near pericentromeric heterchromatin (135, 136). In lymphocytes, Ikaros forms 

a 2-MDa complex that contains 10–12 Ikaros molecules and other proteins (137). In T 

cells, Ikaros forms complexes with Mi-2b (an ATP-dependent chromatin remodeler) and 

histone deacetylases (HDACs) 1 and 2. These are all components of the nucleosome 

remodeling and deacetylation (NURD) complex. This Ikaros/NURD complex is involved 

in chromatin remodeling in vitro and histone deacetylation (137). Additionally, in mature 

lymphocytes, a small amount of Ikaros is also associated with the SWI-SNF remodeling 

complex as well as with the co-repressors Sin3, C-terminal binding protein (CtBP) and 

CtBP-interacting protein (CtIP) (138). Based on these findings, it has been proposed 

that Ikaros can regulate transcription via 1) the recruitment of chromatin remodeling 

complexes, which facilitate nucleosome remodeling and the binding of transcriptional 

activators or repressors 2) histone modifications mediated by the Ikaros/NuRd or 

Ikaros/Sin3 complexes that contain HDACs 1 and 2, therefore causing histone 

deacetlyation and transcriptional silencing and 3) CtBP and CtIP-mediated suppression, 

independent of HDAC activity (139). Ikaros’ regulation of gene expression via these 
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various mechanisms can therefore influence the development and function of immune 

cells. 

 

Ikaros and T Cells. Defects in T cells and their resulting malignancies in Ikaros 

deficient mice pointed to its critical role in T cell development. In particular, Ikaros plays 

an important role in thymocyte differentiation and the development of mature T cells. 

Ikaros controls the differentiation of CD4+CD8+ (double positive) thymocytes towards 

CD4 and CD8 T cell fates as seen in Ikaros null mice (140, 141). 

Terminaldeoxytransferase (TdT) is repressed by Ikaros at the early stages of thymocyte 

development (142). Ikaros also modules Cd4 gene expression using chromatin 

remodeling complexes (143) and activates the CD8a gene (144). Ikaros controls CD4+ 

and CD8+ proliferation in response to TCR signaling as T cells with reduced Ikaros 

activity require less engagement of their TCR for activation, proliferate abundantly in 

response to IL-2 and are less sensitive to inhibition of both TCR and IL-2 signaling 

(145). Ikaros also regulates key genes involved in T cell activation, anergy and 

tolerance such as CD3 delta activation (108), IL-2 in CD4+ and CD8+ T cells (146-148), 

IL-10in CD4+ T cells (149), IFN-γ production in Th2 differentiation (150), IL-22 in CD4+ T 

cells (151) and has recently been suggested to be involved in the differentiation of IL-

17-producing T cells (152). Ikaros regulates the expression of several transcription 

factors involved in T cell differentiation including Signal Transducer and Activator of 

Transcription 4 (STAT4) (153) and T-bet (150, 154). Ikaros also regulates some Notch 

target genes that are critical for normal T cell development (155, 156).  
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Post-Translational Modifications of Ikaros. Studies have revealed that Ikaros 

undergoes a number of post-translational modifications. The most well-studied post-

translational modification of the Ikaros protein is phosphorylation. Phosphorylation of 

Ikaros was first identified in studies aimed at understanding how Ikaros is regulated cell 

cycle progression based on its role in lymphocyte development and proliferation (157). It 

was found that Ikaros was mainly phosphorylated at two major sites: a serine/threonine-

rich region within amino acids 385 to 394 of exon 8 and S63 in the alternatively splicted 

exon 4, which affect its ability to negatively regulate the G1/s transition of the cell cycle 

(157) (Figure 1.7). Mutations that prevented phosphorylation in exon 8 led to increased 

ability of Ikaros to inhibit cell cycle progression and its DNA binding affinity (157). 

Protein kinase CK2 (formerly Casein Kinase II) was found to be mainly responsible for 

this observation (157). Subsequently, four novel CK2 phosphorylation sites at amino 

acids 13,23,101 and 294 in Ikaros were discovered (Figure 1.7). Mutations of amino 

acid 13 and 294 decreased Ikaros ability to bind DNA probes, altered its pericentromeric 

localization and prevented its regulation of its target gene, TdT, involved in thymocyte 

differentiation (158). These findings provided evidence that CK2 activity and/or 

hyperphosphorylation of Ikaros play a role in T cell differentiation (159). 

Dephosphorylation of Ikaros in its c-terminus is mediated by protein phosphatase 1 

(PP1). PP1 dephosphorylation of Ikaros is necessary for its DNA binding activity, ability 

to localize to pericentromeric heterochromatic and protein stability. Increased CK2-

mediated phosphorylation of Ikaros versus PP1 dephosphorylatioon at proline (P), 

glutamic acid (E), serine (S), and threonine (T) (PEST) regions leads to increased 

protein degradation of Ikaros via the ubiquitin/proteasome pathway (15) (Figure 1.7).  



www.manaraa.com

 23!

 

Overall, insight into the regulation of Ikaros showed that a balance between CK2 

and PP1 is needed for normal Ikaros expression and function in regulating transcription, 

stability, cell cycle progression, T cell differentiation and the prevention of malignant 

transformation such as leukemias (15) (Figure 1.8). Both Spleen tyrosine kinase (syk) 

and bruton’s tyrosine kinase (btk) have also recently been found to phosphorylate 

Figure 1.7 Ikaros PEST and phosphorylation regions. A. Schematic 
representation of two PEST regions in the Ikaros protein. B. Schematic 
representation of CK2 phosphorylation sites and PP1 binding site in Ikaros 
protein. A. Note. Reprinted from “Ikaros Stability and Pericentromeric Localization 
Are Regulated by Protein Phosphatase 1” by Popescu et al., 2009, J Biol Chem. 
284, pg.13869-13880. Copyright © 2009, The American Society for Biochemistry 
and Molecular Biology, Inc. Reprinted with permission (15). B. Note. Reprinted 
from Protein Phosphatase 1 (PP1) and Casein Kinase II (CK2) regulate Ikaros-
mediated repression of TdT in thymocytes and T-cell leukemia” by Wang et al., 
2014, Pediatric Blood and Cancer. 61, pg. 2230-2235. © 2014 Wiley Periodicals, 
Inc. (19). 
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Ikaros leading to nuclear localization of Ikaros, DNA binding activity and transcription 

factor function (160, 161). 

 

 

 

 

 

 

 

 

 

 

Recent studies have shown that pharmacological agents can regulate Ikaros 

protein stability.  The immunomodulatory agents lenalidomide and pomalidomide are 

used to treat a number of blood cancers.  These drugs cause proteasomal degradation 

of Ikaros and Aiolos in T cells, altering T cell function, via their effects on a ubiquitin 

ligase (162).  Similar effects of these drugs on Ikaros protein degradation have also 

been discovered in multiple myeloma cells (163, 164).  

Figure 1.8 A representation of Ikaros’ regulation by CK2 and PP1. PP1 
dephosphorylates Ikaros maintaining its protein stability. However, CK2 
hyperphosphorylates Ikaros, which facilitates its polyubiquitination and eventual 
protein degradation by the ubiquitin-proteasome system. Note. Reprinted from 
“Ikaros Stability and Pericentromeric Localization Are Regulated by Protein 
Phosphatase 1” by Popescu et al., 2009, J Biol Chem. 284, pg.13869-13880. 
Copyright © 2009, The American Society for Biochemistry and Molecular Biology, 
Inc. Reprinted with permission (15). 
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 Ikaros is also posttranslationally modified by SUMOylation (165). SUMOylation 

involves the conjugation of the small ubiquitin-related modifier (SUMO) protein via an 

enzymatic pathway similar to ubiquitination but instead being capable of maintaining 

protein stability. Ikaros SUMOylation occurs with the N-terminal repression domain at 

K58 and K240 negatively affecting its repressor functions by disrupting its interactions 

with HDAC-dependent and –independent chromatin remodeling complexes (165).  

 

Protein Kinase CK2 

Since its discovery in 1954 by Burnett and Kennedy (166) , protein kinase CK2 

has been a widely studied protein of interest in a number of pathological events (167). 

Protein kinase CK2 (~130 kDa) is a ubiquitously expressed, second messenger-

independent, constitutively activated serine/threonine kinase (168, 169). CK2 forms a 

holoenzyme typically composed of two α or α’ catalytic subunits (~42 and 28 kDa) linked 

by two molecules of the β regulatory subunit (~28 kDa) to form either a hetero- or homo- 

tetramer, depending on the cell type (168, 170-172) (Figure 1.9) 

In most cases, the CK2β subunit has been shown to confer the enzyme’s 

substrate specificity as well as its activity and stability (173, 174). However, studies 

have also revealed that the individual subunits also exist and function outside of the 

confines of the holoenzyme complex (168, 175). The requirement for protein kinase 

CK2 as a critical regulator of development and cellular proliferation/survival is evident 

based on studies, which showed embryonic lethality in CK2β knockout mice while 

CK2α’ knockout mice are viable but produce sterile offspring, ndicating its role in 

spermatogenesis (176-178).  
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CK2 exhibits its effect through phosphrylation of its substrates at residues N-

terminal to clusters of acidic residues with the minimal consensus sequence S/T-X-X-

D/E (179), using either ATP or GTP as its phosphate donor (168, 180). The diversity of 

its numerous substrates is attributed to the fact that CK2 is ubiquitously expressed in 

mammalian cells and tissues (181, 182). CK2 shuttles between the cytoplasmic and 

nuclear compartments under various conditions, such as in response to growth stimuli 

(183, 184). However, its functionality, as it relates to cell growth and apoptosis, appears 

to primarily occur in the nucleus (185).  As a result, the large repertoire of potential CK2 

substrates found in various cellular compartments, are mainly transcription factors and 

genes, involved in cellular proliferation and play key roles in oncogenic signaling (170, 

Figure 1.9. Crystal structure of tetrameric CK2. Ribbon representation of CK2 
holoenzyme and subunits (PBD no. 1JWH) bound with non-hydrolysable ATP 
analogue adenylyl imidodiphosphate (AMPPNP). The catalytic α subunits are 
presented in purple and yellow; the regulatory β subunits are in red and green. Gray 
circles represent Zn2+. Note. Reprinted from “Casein Kinase II” by Turowec et al., 
2012, Encyclopedia of Signaling Molecules, pg.234-242. © Springer, Part of Springer 
Science+Business Media. Reprinted with permission (11). 
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172, 186). CK2 substrates that contribute to cellular advantages in cancer cells have 

been extensively studied and described. It is well understood that CK2 regulates and 

interacts with a number of oncogenes and tumor suppressor and other important genes 

involved in transcription and chromatin remodeling, cell cycle arrest, cell proliferation 

and survival, apoptosis and metastasis and invasion, signal transduction pathways that 

are often dysregulated in cancers (171, 187).  

CK2 is expressed in both normal and cancer cells and was therefore initially 

thought to be a marker of cellular proliferation (187, 188). However, studies 

subsequently proved that elevated levels of CK2 in the nucleus and its suppression of 

apoptosis and induction of dysplasia were specific to cancer cells (189-193). In fact, 

CK2 protein expression is upregulated in all cancers examined thus far (171, 172, 187), 

emphasizing its role in tumorigenesis. CK2α in transgenic mice leads to the 

development of T cell leukemia and lymphoma ((194-197), similar to that observed in 

mice with impaired Ikaros function (145, 198-200).  

 

CK2 Inhibitors 

With studies providing evidence that CK2 plays a critical role in cellular 

processes that lead to tumorigenesis(185), it is no surprise that emerging research has 

extensively focused on creating specific inhibitors of CK2 (13) (Summarized in Table 

1.1).  
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 CK2’s ATP binding site contains unique bulky residues that favor the design of 

ATP-competitive inhibitors (201, 202). DRB (5,6-di- chloro-1-(b-D-ribofuranosyl)-

benzimida- zole) is one of the first identified CK2 inhibitors (203). Natural compounds, 

specifically flavonoids a group of substances found in fruit, vegetables, wine and tea, 

have also been found to inhibit CK2 activity. These include, apigenin and quercetin, 

which are more potent inhibitors of CK2 activity than DRB but are also not very specific 

(202). Apigenin, (4',5,7-trihydroxyflavone,5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-

benzopyran-4-one) (Figure 1.10), is present in plants and in high levels in fruits, 

vegetables, herbs and spices especially, chamomile and parsley (204). Apigenin is 

characterized as a selective CK2 inhibitor with a Ki near 1uM in cell culture (205) and an 

Table 1.1 Common CK2 inhibitors. CK2 inhibitors by inhibitor family, selectivity and 
protein kinases (PKs) inhibited. Selectivity is represented as the ratio between the 
total number of PKs inhibited by the molecule (with comparable or better efficacy 
than CK2; 500-fold greater than the IC50 of CK2 for CX-4945) and the total number 
of PKs on which the activity has been tested. Note. Modified with permission from 
“How druggable is protein kinase CK2?” by Cozza et al., 2010, Med Res Rev, 30, 
pg.419-462. © 2009 Wiley Periodicals, Inc. (13). 
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IC50 = 0.80 µM (206). Apigenin is an ATP-competitive CK2 inhibitor (207). Apigenin 

displays pro-apoptotic, anti-inflammatory, anti-cancer and chemopreventative effects, 

which are thought to depend on its effects on CK2 (204).  

 

 

 

 

 

 

 

Another natural product shown to inhibit CK2 and other kinases is emodin (1,3,8-

trihydroxy-6-methyl-antraqui- none). However, its specificity is quite broad (208). 

Currently, the most commercially available CK2 inhibitors are TBB (4,5,6,7-tetrabromo-

1H- benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo- 1H-benzimidazole). 

Analyses showed that these two inhibitors are fairly specific to CK2 (209, 210).  TBB is 

a derivative of DRB (209) while DMAT is a derivative of TBB’s analogue, TBI 

(tetrabromo-benzimidazole) (211).  IQA (5-oxo-5,6-dihydro-indolo(1,2-a)quinazolin-7-

yl]acetic acid) another CK2 inhibitor, shows enhanced selectivity and efficacy in vitro 

and in vivo compared to  TBB, emodin and apigenin (202). More recently, Cylene 

Pharmaceuticals developed the first orally bioavailable CK2 inhibitor called CX-4945 

(Silmitasertib). This potent and highly selective, small molecule inhibitor, inhibits both 

Figure 1.10. The structure of apigenin (5,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-
benzopyran-4-one). 
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CK2α and CK2α’ and demonstrates causes cell cycle arrest, inhibition of cellular 

proliferation pathways and promotes apoptosis (212, 213). CX-4945 advanced to 

clinical trials in patients with solid tumors and was well-tolerated with minimal side 

effects, inhibited CK2 and AKT pathways and stabilized disease in some patients (214).   

 

Protein Phosphatase 1 (PP1) 

PP1 (~38.5 kDa) is one of the major eukaryotic serine/threonine phosphastases 

belonging to the PP1 family, which includes PP1, PP2A, PP4, PP6, PP2B/calcineurin, 

PP5 and PP7 (12, 215). PP1 and PP2A are the most abundantly expressed with PP1 

being expressed in all cells. The PP1 catalytic subunit (PP1c) can complex with over 

200 regulatory subunits, converting PP1c into various holoenzymes (216) (Figure 1.11) 

with discrete substrates, subcellular localizations and regulatory mechanisms. On the 

contrary, PP1 inhibitory proteins bind to its active site containing metal ions that are 

necessary for its activity (216). 

 

 

 

 

 

 

 

 

Figure 1.11. Representation of the single catalytic domain of PP1. (PP1c – 
gray; pink - metal ions) from PDB 3EGG. PP1c can bind to a plethora of 
regulatory (R) subunits (blue), which converts it to specific holoenzymes with 
different activities and substrate specificities. Note. Reprinted from “Structural 
basis for protein phosphatase 1 regulation and specificity” by Peti et al., 2012, 
FEBS Journal, 280, pg. 596-611 Copyright © 1999-2014 John Wiley & Sons, Inc. 
All Rights Reserved. Reprinted with permission (12). 
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As a result, PP1 plays roles in a number of cellular processes by regulating signaling 

cascades via independent mechanisms (217). In all eukaryotes, multiple genes encode 

PP1c, except in yeast (218). Four mammalian PP1c products were initially designated 

PP1α, PP1β (also known as PP1δ), as well as PP1γ1 and PP1γ2, which are alternative 

splice variants (217). PP1α, PP1β/δ and PP1γ1 are ubiquitously expressed, while 

PP1γ2 is testis-specific. Studies have identified over 200 PP1 regulatory subunits (12, 

216) that bind PP1c and target it to particular subcellular compartments or substrates, 

enhancing its substrate specificity (217). On the contrary, inhibitory proteins can bind 

and block PP1c’s active site that contains two metal ions (12, 219, 220). The primary 

PP1 binding motif, the RVxF motif, where x is any residue other than Phe, Ile, Met, Tyr, 

Asp or Pro, allows for binding of PP1 regulatory proteins and some PP1 substrates to 

PP1 but does not influence its activity (12, 221, 222). PP1 regulates cellular processes 

including cell cycle progression, protein synthesis, muscle contraction, carbohydrate 

metabolism, transcription and neuronal signaling (217). 

 

An Overview of Proteolysis 

Turn over of all intracellular and some extracellular proteins is a common 

occurrence resulting in protein hydrolysis to their amino acids components and new 

protein synthesis.  Therefore, this process is important in maintaining protein 

homeostasis (223). Original studies pointed at the lysosome, where proteins and 

organelles are targeted by microautophagy and macroautophagy, respectively, and 

degraded by proteases, as the machinery primarily responsible for intracellular 

proteolysis. However, subsequent evidence suggested non-lysosomal mechanisms of 
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protein degradation of most intracellular proteins pointing to the ubiquitin-proteasome 

system (223).  

 

Protein Degradation and the Ubiquitin-Proteasome System 

The ubiquitin-proteasome system plays an essential role in degradation of 

intracellular eurkaryotic proteins. This irreversible process can lead to deregulation of 

pathways leading to cellular changes. This requires adaptation to new conditions that 

can cause various diseases (224). The ubiquitin-proteasome pathway consists of a 

series of enzymes that cooperatively add chains of ubiquitin (Ub;a small 76 residue, 

protein), a polypeptide co-factor, to proteins, to mark them for degradation (Glickman 

(225, 226). The polyubiquitination of a protein is an ATP-dependent, multi-step cascade 

carried out by three enzymes. E1 is the Ub-activating enzyme, E2 is the Ub-carrier or 

conjugating enzyme and E3 is the Ub-ligase, which is the key enzyme that recognizes 

proteins and catalyzes Ub transfer (224). E1 activates Ub at its C-terminus forming a 

linkage to itself. Next, the Ub Is transferred to E2 enzymes, which are then conjugated 

with E3 enzymes that recognize proteins to be ubiquitinated (224). Ubiquitinated 

proteins are recognized by the 26S proteasome, a large multicatalytic protease that 

degrades them to small peptides (227). The 26S proteasome consists of two 

complexes, the 20S core particle, which contains the catalytic activity, and a 19S 

regulatory particle. The 20S unit is a barrel-shaped structure containing two outer α-

rings and two identical inner β-rings, which house the catalytic sites. The 20S subunit is 

also capped on one or both ends by the 19S regulatory particle, which recognizes 

polyubiquitinated (at least 5 Ubs) proteins, cleave the Ub chain and linearizes the  
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proteins facilitating its entry into the 20S subunit where they are digested into peptides 

and Ub is recycled (223, 224)  (Figure 1.12). 

The Ub-proteasome pathways also influences gene transcription. For example, 

many transcription factors are subject to proteasomal degradation (228). This often 

involves the overlap of transcriptional activation domains and ubiquitination signals 

(224). Degradation of regulators of transcription factors can also contribute to altered 

gene expression and localization (229, 230) and may thus contribute to oncogenesis. 

 

Figure 1.12 Overview of the Ubiquitin-Proteasome System (UPS). Ubiquitinaiton 
of proteins is carried out in three steps: 1) Activation – Ubiquitin (Ub) binds to E1 
activating enzyme by using one ATP to AMP 2) Conjugation – Ub is transferred to the 
E2 conjugation enzyme 3) E2 transfers Ub to a substrate bound to the E3 ligase. 
Polyubiquitylation occurs extending the ubiquitin chain on the substrate. The 
substrate then enters the 26S proteasome and is subject to degradation and the 
ubiquitin molecules are released by deubiquitylation enzymes. 
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Content of the Dissertation and Central Hypothesis 

 Ikaros is defined as a tumor suppressor in T cells and has been extensively 

studied in hematological studies. However, its possible involvement in the regulation of 

T cells in solid cancers has not been fully investigated. This dissertation focuses on the 

regulation of Ikaros and its role in the maintenance of T cell homeostasis in murine 

pancreatic cancer. We hypothesize that in the pancreatic tumor microenvironment, 

there is an upregulation of protein kinase CK2 activity vs PP1 activity, which abrogates 

Ikaros’ expression, thus leading to an imbalance in effector CD4/CD8+ and regulatory T 

percentages and function. First, we show that Ikaros is downregulated at the protein but 

not mRNA level in splenocytes from our pancreatic tumor-bearing (TB) mice. Results 

suggest that downregulation may be attributed to its ubiquitin-mediated proteasomal 

degradation in response to factors produced by pancreatic cancer cells. Moreover, our 

results suggest that alternations in the balance of protein kinase CK2 and PP1, favoring 

increased CK2 activity may be the mechanisms involved. We also show that loss of 

Ikaros expression in T cells may lead to a disruption in the balance of effector CD4/CD8 

T cells and regulatory T cells, needed for effective anti-tumor immunity. To further 

delineate the mechanism(s) by which Ikaros may be regulated and its involvement in T 

cell responses in our pancreatic cancer model, we evaluated the effects of apigenin, a 

natural plant flavonoid and selective CK2 inhibitor. We show that apigenin stabilizes 

Ikaros expression in vitro and in vivo while maintaining T cell homeostasis and immune 

function. Overall, these data suggest a previously undefined role for Ikaros in regulating 

effector and regulatory T cell development in murine pancreatic cancer thereby possibly 

making it a potential target for enhancing anti-tumor immune responses. Therefore, 
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phamacrological inhibition of CK2 may be a potential adjuvant therapy for treating 

murine pancreatic cancer. 
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CHAPTER TWO 

MATERIALS AND METHODS 

 

Cell Culture 

The murine pancreatic adenocarcinoma Panc02 cell line was established by 

Corbett et al. (1984) (1). This cell line was maintained in RPMI 1640 (Gibco) medium, 

supplemented with 10% fetal bovine serum (FBS), (HyClone), 2 mM L-glutamine, 100 

U/ml penicillin and 100µg/ml streptomycin (Gibco) (known as Complete Media). Cells 

were harvested from frozen stock (provided by Dr. Nasreen Vohra), thawed in a water 

bath and suspended in complete growth media in a 15ml conical tube. The cells were 

centrifuged at 1200rpm for 5 minutes; the supernatant was discarded and the cells were 

resuspended in 15ml of complete growth media and transferred to a vented T-175 flask 

(BD Falcon). The flask was placed in an incubator at 37°C with 5%CO2. Cells were 

subcultured every 2 days using 0.025% trypsin-EDTA, at approximately 80% 

confluency. Media was removed from the flask and the cells were washed with 1X 

Dulbecco's Phosphate Buffered Saline (no calcium or magnesium) (Life Technologies) 

(1XDPBS herein referred to as PBS). The PBS was removed and 5ml of 0.025% 

trypsin-EDTA (Life Technologies) was added to the flask. The flask was placed in the 

incubator for 5 minutes. When the cells were dislodged, complete media was added to 

the flask, and the cells were split into a new T-175 flask and returned to the incubator 
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(2). Cells were similarly harvested with trypsin for all experiments. Panc02 cells at 

passage (P) <10 were used for all in vitro and in vivo experiments. 

 

Mice 

Female C57BL/6 mice aged 6 to 8 weeks were purchased from Harlan 

Laboratories (Indianapolis). The Institutional Animal Care and Use Committee of the 

University of South Florida approved protocol R4152, in compliance with the Guide for 

the Care and Use of Laboratory Animals. The mice were maintained in a pathogen-free 

animal facility with 4 to 5 mice per cage. All mice were left undisturbed 1 week prior to 

commencing the experiments. Panc02 cells were harvested as previously described, 

resuspended in PBS and counted, using a 0.4% trypan blue (Thermo Scientific), a 

hemacytometer and an inverted microscope. The total number of cells was determined 

and the volume of PBS needed to resuspend the cells at a concentration of 7.5x105 

cells/ml was calculated. Cells were then centrifuged at 1200 rpm for 5 minutes, the 

supernatant was discarded and the pellet was resuspended in the calculated volume of 

PBS. Mice were randomly assigned into tumor-bearing (TB), control (ctrl) and apigenin 

(TB-API) groups, as needed. At week 7, all TB mice were subcutaneously (s.c.) injected 

with 100µl of the 7.5x105 cells/ml (1.5×105) murine Panc02 cells while ctrl mice received 

100µl PBS via subcutaneous (s.c.) injection, both administered on the lower, left, ventral 

abdomen using a 25 5/8-gauge needle. A cohort of TB mice was treated with 25mg/kg 

apigenin via intraperitoneal injection (i.p.) on the lower, right ventral abdomen, every 

three days, after the appearance of palpable tumors. Every three days, the mice were 

also weighed using a scale and tumors were measured using a digital caliper (2). 
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Approximately 28 days post Panc02 injection, mice were sacrificed by CO2 asphyxiation 

and cervical dislocation. Animals were dissected using sterile instruments; the spleens 

were harvested and stored in PBS for processing. Spleens from spontaneous 

transgenic LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre mice, known as triple mutant 

(TrM) mice, were similarly harvested and used in this study (3).  Spleens from 11 to 12-

week-old female BALB/c mice were harvested and used for allogeneic mixed leukocyte 

reactions (MLR) (4). For in vitro experiments, spleens from female naïve (no injection) 

C57BL/6N aged 6 to 8 weeks were used. 

 

Single Cell Suspension of Spleens 

Spleens from all mice were collected in PBS and made into single cell 

suspensions using a cell dissociation sieve and tissue grinder kit (Sigma). The single 

cell suspension was strained into a 50ml conical tube using a 70µm cell strainer (BD 

Biosciences). The single cell suspension was centrifuged at 1200 rpm for 5 minutes and 

the supernatant was discarded. The cell pellet was resuspended in 5ml of 1X red blood 

cell (RBC) lysis buffer (eBioscience),  per spleen, and incubated for 5 minutes at room 

temperature, with pipetting. The reaction was stopped by adding 20ml of PBS. 

Furthermore, the cells were centrifuged at 1200 rpm for 5 minutes, the supernatant was 

discarded and the resulting splenocytes (leukocytes) were resuspended in PBS. Cells 

were diluted 1:10 in 0.4% trypan blue (Thermo Scientific), and counted for downstream 

experiments using a hemacytometer and inverted microscope.  
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  Western Blotting  

Protein lysates were prepared from splenocytes of control, TB, TrM mice and in 

vitro treated naïve splenocytes. Splenocytes were resuspended in modified 

radioimmunoprecipitation (RIPA) Buffer (Millipore), supplemented with Na3OV4 (Sigma-

Aldrich) and protease inhibitor cocktail (Sigma-Aldrich) then rocked for 45 minutes at 

4°C. Cells were centrifuged at 14000 rpm for 15 minutes and protein lysate 

supernatants were transferred to new tubes and stored at -20°C. Protein concentrations 

were determined using the BCA Protein Assay Kit (Thermo Fisher Scientific) and 

protein lysates diluted at a ratio of 1:10. A maximum of 40 µg cell protein lysates diluted 

in 4x NuPAGE® LDS Sample Buffer or 2x Laemmli Buffer were loaded and resolved 

using NuPAGE® 4–12% Bis-Tris pre-cast polyacrylamide Gels (Invitrogen) or 12% 

hand-cast gels, respectively, for 45 minutes at 200V by SDS-PAGE electrophoresis. 

Proteins were then transferred from the gels to nitrocellulose membranes (Whatman) at 

25V for 2.5 hours. The membranes were blocked with 5% non-fat milk in 0.1% Tween-

20/PBS for 1hr at room temperature and washed three times, using 0.1% Tween-

20/PBS for 5 minutes each. The following antibodies were diluted in 3% bovine serum 

albumin (BSA) (Sigma-Aldrich) and 2% non-fat milk in 0.1% Tween-20 (Fisher 

Scientific)/PBS: anti-Ikaros (Cell Signaling), at a dilution of 1:1000, anti-p53 (Santa 

Cruz), anti-CK2α (Santa Cruz Biotechnology), and anti-PP1 (Santa Cruz Biotechnology) 

at a dilution of 1:200. The blots were incubated with these antibodies overnight at 4°C 

and then washed three times using 0.1% Tween-20/PBS for 5 minutes each. Primary 

antibodies were detected using their respective secondary IgG, HRP-conjugated 

antibodies (Jackson Immunoresearch), at a dilution of 1:10000 in 3% BSA and 2% non-
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fat milk in 0.1% Tween-20/PBS and incubated for 1hr at room temperature. The blots 

were washed three times using 0.1% Tween-20/PBS for 5 minutes each. Secondary 

antibodies were identified using Super Signal West Pico and Femto Chemiluminescent 

Substrates (Thermo Fisher Scientific). As an internal control for equal protein loading, 

all blots were stripped and re-probed with anti-β-actin (Sigma-Aldrich) at a dilution of 

1:20,000 or anti-GAPDH (Santa Cruz Biotechnology) diluted 1:200 in 3% BSA, 2% non-

fat milk in 0.1% Tween-20/PBS, for 90 minutes at room temperature; the blots were 

later identified using Super Signal West Pico Chemiluminescent Substrate (Thermo 

Fisher Scientific).  Membranes were either exposed to x-ray films (Phoenix) and 

developed using a Kodak M35-X OMAT Processor or imaged using a ChemiDoc XRS 

Imaging System (Bio-Rad). Band intensities were quantified using Quantity One 1-D 

densitometry and Image Lab softwares (Bio-Rad) (2). 

 

Quantitative Real-Rime Polymerase Chain Reaction (qPCR) 

Total RNA was extracted from single-cell suspensions of control and TB whole 

splenocytes using TRI Reagent (Molecular Research Center). 5-10 x 106 Splenocytes 

were resuspended and lysed in 1ml TRI reagent and stored at -80°C, until needed. 

Phase lock gel heavy tubes (5 Prime) were pelleted at 1500g for 30 seconds. Lysates 

were thawed at room temperature and transferred to phase lock gel heavy tubes. Phase 

separation was carried out by adding chloroform to the samples and vigorously shaken 

for 15 seconds. Tubes were centrifuged at 1200g for 10 minutes at 4°C. The resulting 

aqueous phase was transferred to newly labeled tubes, precipitated using isopropanol, 

and incubated at room temperature for 10 minutes. Samples were centrifuged at 
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12000g for 10 minutes at 4°C. The supernatant was discarded and the pellets were 

washed twice with 75% ethanol, vortexed and centrifuged at 12000g for 5 minutes at 

4°C. Supernatants were discarded, pellets were air-dried for 5 minutes at room 

temperature and dissolved in RNase free water (Life Technologies). In order to degrade 

DNA impurities from the obtained RNA sample, DNase treatment was performed using 

the Ambion TURBO DNA-free™ Kit (Life Technologies), according to the 

manufacturer’s protocol. Resulting RNA was then quantitated using a Nanodrop 2000 

Spectrophotometer (ThermoScientifi). If deemed necessary, RNA clean-up was 

performed using the NucleoSpin® RNA Clean-up (Macherey-Nagel), according to the 

manufacturer’s protocol and requantitated using the Nanodrop 2000. cDNA was then 

synthesized with the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems) using up to 2µg of RNA diluted in RNase-free water, as stated per the 

manufacturer’s instructions. As a negative control, reactions were prepared without the 

Multiscribe™ reverse transcriptase kit component. Reverse transcription was performed 

using a thermal cycler (Biometra) under the following conditions: Step 1-  at 25°C for 10 

minutes; Step 2 -   at  37°C for 120 minutes; Step 3-  at  85°C for 5 minutes and Step 4-, 

hold. cDNA was either  stored at -20°C for long-term storage or 4°C with EDTA at a final 

concentration of 1mM up to 24 hours. qPCR was performed using 1µl of cDNA, the 

SYBR Green JumpStart Taq Ready Mix (Sigma-Aldrich) and an ABI StepOne Plus 

Real-Time PCR System (Applied Biosystems). No template controls (NTCs) reactions 

were prepared without cDNA templates. The following conditions were used: 95°C for 

10 min followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min, and primers: 

forward, 5′-CAT AAA GAG CGA TGC CAC AA-3′ , reverse, 5′-CAG GAC AAG GGA 
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CCT CTC TG-3′ (5). Each sample was assayed in triplicate. GAPDH was amplified as 

the internal control and reference gene. Normalization to GAPDH was used to 

determine relative mRNA frequency using the Comparative CT method (2). 

 

CD3+ T Cell Enrichment 

Whole splenocytes from control, TB and naïve mice were processed into single-

cell suspensions, as previously described. CD3+ T cells were purified (~90% purity) from 

whole splenocytes by positive selection using either anti-CD3-1-PE (eBioscience) and 

anti-PE-magnetic microbeads (Miltenyi) on an automated magnetic activated cell sorting  

(AutoMACS) Pro Separator (Miltenyi) (6) or the EasySep Mouse T Cell Enrichment kit 

(Stem Cell Technologies), according to the manufacturer’s protocol. For automated 

magnetic activated cell sorting, single-cell suspensions of splenocytes were 

resuspended at 2x107 cells/ml in 0.5% BSA/PBS, centrifuged and the supernatant was 

discarded. Pellets were resuspended in 45µl of 0.5% BSA/PBS. 5µl of anti-CD3-PE 

(eBioscience) per for 107 cells was added; the cells were incubated for 10 minutes in 

the refrigerator. Cells were washed, centrifuged and supernatants were discarded. 

Pellets were then resuspended in 160µl of 0.5% BSA/PBS and 40µl of anti-PE 

microbeads per for 107 cells, and incubated for 10 minutes in the refrigerator. Cells were 

centrifuged and washed using 0.5% BSA/PBS and resuspended in 3ml of 0.5% 

BSA/PBS. The cells were then filtered into a 50ml conical tube using a 70µm strainer.!

On the AutoMACS Pro Separator, cells were separated using positive selection and the 

POSSEL program (6). Using the EasySep Mouse T Cell Isolation Kit, splenocytes were 

resuspended at 1x108 cells/ml in 2% fetal bovine serum (FBS)/PBS in a 5ml round 
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bottom polystyrene tube (BD Falcon). A maximum of 2ml of cells (2x108 cells) were 

used. 50µl/ml of normal rat serum and 50µl/ml of antibody cocktail were added then 

incubated for 10 minutes at room temperature. The provided Rapidspheres™ were 

vortexed for 30 seconds; 75µl/ml of cells were added and incubated for 2.5 minutes at 

room temperature. The total volume was increased to 2.5 ml using the 2%FBS/PBS 

buffer. The tube was placed on the EasySep magnet for 5 minutes at room temperature 

and the enriched CD3+ T cells (unlabeled) were poured into a new tube and counted for 

downstream experiments. In both techniques, the percent enrichment was determined 

by analyzing the CD3+ T cell percentages, pre- and post-enrichment, using flow 

cytometry and CD3-PE antibodies (eBioscience). Protein lysates were then prepared as 

previously described.  

 

In vitro Assays 

Single-cell suspensions of whole and CD3+ enriched T cells from splenocytes 

and from naïve mice were prepared and counted as previously described. 4x105 

splenocytes were cultured in 6-well plates containing 3ml of complete RPMI growth 

media. For co-culture assays, Panc02 cells (P<10) were grown to approximately 70% 

confluency in 6-well plates, at which time the media was removed, and resuspended 

splenocytes were added to each well. The proteasome inhibitor Cbz-LLL 

(carbobenzoxyl-L-leucyl-L-leucyl-L-leucine) (MG132; Sigma-Aldrich) and apigenin 

(Sigma-Aldrich) were resuspended in dimethyl suloxide (DMSO) (Fisher Scientific) at 

stock solutions of 100mM, and the appropriate working dilutions prepared. Calculated 

volumes for the indicated concentrations were directly added to the cultures. Control 
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wells were treated with the vehicle. All treated cells were cultured in an incubator for 

four hours in vitro. Suspension splenocytes were harvested from adherent Panc02 cells. 

Protein lysates of these in vitro treated-splenocytes were prepared and analyzed for 

Ikaros protein expression using western blot analysis, as previously described. 

 

In vitro CK2 Kinase Assay 

CK2 kinase activity was measured using the CK2 assay kit (Millipore), according 

to the manufacturer’s instructions. 15µg of protein lysates for each sample were diluted 

in 10µl assay dilution buffer I (ADBI) in microcentrifuge tubes. Three control and TB 

samples were assayed in triplicates. A control for each sample was included which 

lacked the CK2 specific substrate to account for background and non-specific binding. 

Therefore, two sets of triplicates, labeled “with substrate” (+S) and “without substrate” (-

S), were prepared for each control and TB sample. 10µl of CK2 specific substrate 

(RRRDDDSDDD), at a final concentration of 200µM, was added to the tubes with 

substrate (+S) while 10µl of ADBI was added to the tubes without substrates (-S). 10µl 

of a PKA inhibitor cocktail was also added to each tube to inhibit the activity of other 

serine/threonine kinases. 10µl of 100µCi of [γ-32P]ATP (3000 Ci/mmol) (Elmer 

Perkins),diluted 1:10, was added to each tube. Reactions were incubated for 10 minutes 

at 30 ºC with agitation and  then stopped by adding 40µl of trichloroacetic acid (TCA) to 

each tube. 25µl aliquots of each reaction were transferred to numbered P81 

phosphocellulose paper. The papers were washed 6 times with 0.75% phosphoric acid, 

followed by an acetone wash, dried and transferred to scintillation vials containing 

scintillation fluid. Samples were quantitated using a scintillation counter. CK2 activity 
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was calculated by subtracting the mean counts per minute (CPM) of samples in the 

absence of substrate from the mean CPM of samples in the presence of the substrate.  

 

Immunofluorescence Microscopy 

Single-cell suspensions of control and TB splenocytes were prepared, as 

previously described, and resuspended at 3.5x105 cells/ml in complete RPMI media. 

Cytospins were prepared using 100µl of the cell suspension, Shandon™ Single 

Cytoslides™ (ThermoScientific), cytology funnels (VWR) and a Shandon CytoSpin™ 2 

Centrifuge (Shandon) at 300rpm for 3 minutes. Cytospin slides were air-dried and fixed 

at -20°C in methanol:acetone (3:1) for a minimum of 20 minutes and a maximum of 2 

months. Slides were washed in Tris plus Triton-X for 3 minutes with shaking. This was 

followed by a Tris buffer wash with shaking for 10 minutes with buffer changes every 2 

minutes. Slides were then stained with a rabbit polyclonal against Ikaros (Santa Cruz 

Biotechnology), diluted 1:200 in 0.1% NP-40 (NP-40; Sigma-Aldrich) in 1% BSA 

(Sigma-Aldrich) in PBS for 1 hr at room temperature. Slides were washed with Tris 

buffer with shaking for 10 minutes, with buffer changes every 2 minutes. Slides were 

stained with a secondary goat anti-rabbit Alexa Fluora 594 antibody (Life Technologies), 

diluted 1:200 in 0.1%, NP-40 in 1% BSA in PBS, for 30 mins at room temperature. 

Appropriate isotype controls were used to check for non-specific binding which was not 

detected.  Slides were washed with PBS 3 times for two minutes each, followed by dH20 

twice for 2 minutes each. Slides were dried and cover slips were applied and mounted 

using ProLong® Gold Antifade Mountant with DAPI (Life Technologies). 
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Immunofluorescence was imaged using a Zeiss Olympic Microscope, and analyzed 

using Image J Software (7). 

 

Flow Cytometry 

Splenocytes were harvested from control, TB and TrM mice and were processed 

into single-cell suspension, as previously described. Cells were then suspended at 

2x107 cells/ml in 3%FBS/PBS. 50µl of cells (1x106 cells) were transferred to their 

respective wells of a 96-well V-bottom plate for mixed staining with T-cell antibodies. 

Cells were also added for single-stain compensations. Cells were blocked with 50µl 

Mouse Fc block (Purified Rat Anti-Mouse CD16/CD32 - BD Biosciences) diluted in 

3%FBS/PBS for 15 minutes at 4ºC. The plate was centrifuged and supernatants were 

removed from each well. A master mix was prepared containing T cell surface markers 

including: anti-CD3-FITC (eBioscience), anti-CD4-Pe-Cy7 (BD Pharmingen), anti-CD8-

APC-H7 (BD Pharmingen), anti-CD25 PE (eBioscience) diluted in 3%FBS/PBS. 50µl of 

the master mix was added to each well containing cells for mixed staining with T-cell 

antibodies. Single-stains for each fluorochrome was added to wells for single-stain 

compensations. The cells were incubated for 30 minutes at 4ºC. The cells were then 

washed twice with 3%FBS/PBS and transferred to labeled 5ml round-bottom 

polystyrene tubes (BD Biosciences) containing 75ng/ml DAPI (except for 

compensations). Flow Cytometry was performed using a BD LSRII (BD Biosciences 

Immunocytometry Systems) and  the data was analyzed with FlowJo software (Tree 

Star Inc.) (2). 
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T Cell Activation and Intracellular Staining 

Single-cell suspensions of splenocytes from control, TB and TB-Api mice were 

processed as previously described and resuspended at 2X106 cells/ml in complete 

RPMI media. 1ml of cells (2X106 cells) from each mouse was plated into 6-well plates.  

The desired volume of mouse T-Activator CD3/CD28 Dynabeads® (Life Technologies) 

was prepared according to the manufacturer’s protocol. Briefly, the dynabeads were 

resuspended by vortexing for 30 seconds and transferred to a 5ml round bottom 

polystyrene tube (BD Falcon). 1ml of 0.1%BSA/PBS buffer was added to the tube and 

the dynabeads were vortexed for 5 seconds. The tube was placed on a DynaMag™-5 

Magnet for 1 minute and the supernatant discarded. The tube was removed from the 

magnet and the dynabeads were resuspended in the same volume of complete RPMI 

as the desired volume of beads originally used. 2x106 beads were then added to each 

well of the 6-well plate containing splenocytes, for a bead-to-cell ratio of 1:1. Complete 

RPMI media was added to each well to bring the total volume up to 3ml. The cells were 

placed in an incubator for 4 days. After four days, the cells from each well of the 6-well 

plate were removed and transferred to labeled 5ml round bottom polystyrene tubes (BD 

Falcon). The tubes were placed on the DynaMag™-5 Magnet for 1 minute and the 

supernatants transferred to newly labeled tubes. 1x106 cells surface stained with anti- 

CD8-PerCPCy5.5 (BD Biosciences) as previously described. The cells were then 

resuspended in 1ml of diluted Foxp3 Fixation/Permeabilization (eBioscience) buffer (1 

part Fixation/Permeabilization Concentrate to 3 parts Foxp3 Fixation/Permeabilization 

Diluent) and vortexed. The tubes were incubated at 4°C for 30 minutes in the dark.  The 

cells were then washed with 1x permeabilization buffer and centrifuged. The 
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supernatants were discarded and the cells were resuspended in 1x permeabilization 

buffer, then stained with anti-IFN-γ-PE and incubated at room temperature, in the dark, 

for 30 minutes. The cells were washed, centrifuged again and resuspended in 

3%FBS/PBS. Flow Cytometry was performed using a BD LSRII (BD Biosciences 

Immunocytometry Systems) and the data was analyzed with FlowJo software (Tree Star 

Inc.) (2). 

 

Mixed Leukocyte Reaction (MLR) 

Splenoctes from BALB/c mice (responders) were prepared, as previously 

described, and resuspended at 1x107 cells/ml in 0.1%BSA/PBS. 5mM 5-(and 6)-

Carboxyfluorescein diacetate succinimidyl ester (CFSE) stock from the CellTrace™ 

CFSE Cell Proliferation Kit (Life Technologies) was prepared by adding 18µl DMSO to 

CFSE vial. 5mM stock CFSE was diluted to 2µM CFSE using 0.1%BSA/PBS. An equal 

volume of 2µM CFSE was added to resuspend BALB/c splenocytes, while stirring, for a 

final concentration of 1µM CFSE. The reaction was placed in a 37°C water bath for 10 

minutes, with stirring every 2 minutes. The reaction was stopped by adding 3 times the 

volume of ice-cold complete RPMI media and quenched on ice for 5 minutes. The cells 

were centrifuged and washed three times with ice-cold complete RPMI media. CFSE 

labeling was confirmed by flow cytometry analysis of cells pre- and post- CFSE labeling. 

The cells were counted and resuspended at 4x106 cells/ml in complete RPMI media. 

50µl (2x105 cells) were added to their respective wells of a 96-well U bottom plate. 

Whole splenocytes from control, TB and TB-Api mice (stimulators) were irradiated at 

2000 rads (one-way allogeneic MLR) and resuspended at 8x106 cells/ml in complete 
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RPMI media. 50µl (4x105 cells) were added to their respective wells of a 96-well U 

bottom plate (4). 100µl volume of complete RPMI media was added to each well for a 

total volume of 200µl. The plate was placed in an incubator at 37°C, 5% CO2. On day 

four, all cells were harvested and the proliferation of CD8+ responder BALB/c cells was 

evaluated by flow cytometry and stained with anti-CD3-PerCP and anti-CD8-APCH7. 

The CFSE dilution profile of CFSE+CD3+CD8+ cells was analyzed by FlowJo software 

(Tree Star Inc.)  

 

Statistical Analysis 

All in vivo and in vitro results described in this study are representative of the 

mean ± S.E.M. of at least three independent experiments analyzed with two-tailed 

Student's test using PRISM 5 software (GraphPad, San Diego, CA). Differences were 

considered significant at p<0.05. 
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CHAPTER THREE 

MURINE PANCREATIC ADENOCARCINOMA REDUCES IKAROS EXPRESSION 

AND DISRUPTS T CELL HOMEOSTASIS 

 

Note to Reader 

 This chapter has been previously published in PLoS One 2011, 6(11) and is an 

open-access article distributed under the terms of the Creative Commons Attribution 

License. 
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Abstract 

Maintenance of T cell immune homeostasis is critical for adequate anti-tumor 

immunity. The transcription factor Ikaros is essential for lymphocyte development 

including T cells. Alterations in Ikaros expression occur in blood malignancies in 

humans and mice. In this study, we investigated the role of Ikaros in regulating T cell 

immune balance in pancreatic cancer mouse models. Using our Panc02 tumor-bearing 

(TB) mouse model, western blot analysis revealed a reduction in Ikaros proteins while 

qRT-PCR showed no differences in Ikaros mRNA levels in TB splenocytes compared to 



www.manaraa.com

! 90!

control.  Treatment of naïve splenocytes with the proteasomal inhibitor, MG132, 

stabilized Ikaros expression and prevented Ikaros downregulation by Panc02 cells, in 

vitro. Western blot analyses showed a reduction in protein phosphatase 1 (PP1) and 

protein kinase CK2 expression in TB splenocytes while CK2 activity was increased. 

Immunofluorescence microscopy revealed altered punctate staining of Ikaros in TB 

splenocytes. Flow cytometry revealed a significant decrease in effector CD4+ and CD8+ 

T cell percentages but increased CD4+CD25+ regulatory T cells in TB splenocytes. 

Similar alterations in T cell percentages, as well as reduced Ikaros and CK2 but not PP1 

expression, were observed in a transgenic, triple mutant (TrM) pancreatic cancer model. 

Ikaros expression was also reduced in enriched TB CD3+ T cells. MG132 treatment of 

naïve CD3+ T cells stabilized Ikaros expression in the presence of Panc02 cells. 

Western blots showed reduced PP1 and CK2 expression in TB CD3+ T cells. The 

results of this study suggest that the pancreatic tumor microenvironment may cause 

proteasomal degradation of Ikaros, possibly via dysregulation of PP1 and CK2 

expression and activity, respectfully. This loss of Ikaros expression may contribute to an 

imbalance in T cell percentages. Ikaros may potentially be a therapeutic target to 

restore T cell homeostasis in pancreatic cancer hosts, which may be critical for effective 

anti-tumor immunity. 

 

Introduction 

Pancreatic ductal adenocarcinoma is currently the fourth leading cause of 

cancer-related deaths in the United States. Despite recent advances, successful 

treatment options against pancreatic cancer have had limited success due in part, to 
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dampened anti-tumor immune responses that promote tumor progression (1, 2). 

Effector CD4+ and CD8+ T cells play important roles in the host’s anti-tumor immune 

responses as they facilitate destruction of tumor cells (3). Regulatory T cells (Tregs) are 

a population of T cells that maintain peripheral immune tolerance against self-antigens 

and foreign antigens (1).  However, the critical balance between effector T cells and 

Tregs is lost in pancreatic cancer TB hosts, which may negatively impact anti-tumor 

immunity (4). In particular, CD4+CD25+ Treg percentages are elevated in the peripheral 

blood of pancreatic cancer patients (5) as well as  lymphoid organs in mice (6). These 

elevated Treg numbers are associated with decreased CD8+ T cell percentages and 

lower survival rates (4). Therefore, an imbalance in effector CD4+ and CD8+ T cells and 

regulatory T cells is a significant impediment to treating pancreatic cancer.  

The Ikaros family of zinc finger transcription factors - Ikaros, Aiolos, Helios, Eos 

and Pegasus - play critical roles in hematopoiesis and lymphocyte development (7). 

Ikaros, the founding member, encoded by the gene Izkf1, can activate and repress gene 

transcription and acts as a tumor suppressor in T cell lineages (8, 9). Mice expressing a 

non-DNA binding dominant-negative (DN) isoform of Ikaros exhibit severe defects 

including the absence of T cells after birth (10). Additionally, mice with one disrupted 

and one functional copy of Ikaros display lymphocyte hyperproliferation and develop T-

cell leukemias and lymphomas (8).   

Ikaros is alternatively spliced, which produces functional and DN isoforms. The 

interaction of functional Ikaros isoforms with DN isoforms inhibit its activity (11). Ikaros 

is also regulated by posttranslational modifications, which include phosphorylation (12, 

13). Protein Kinase CK2 (formerly casein kinase 2) phosphorylation of Ikaros impairs its 
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DNA binding ability, alters its subcellular localization and leads to its ubiquitin-mediated 

proteasomal degradation via phosphorylation in PEST regions (regions containing 

proline (P), glutamate (E), serine (S), and threonine (T) bordered by positively charged 

residues).  In contrast, dephosphorylation of Ikaros by protein phosphatase 1 (PP1) 

maintains Ikaros stability and activity (14). 

The necessity of Ikaros for normal lymphocyte development makes it a critical 

target to be examined in regulating immune responses in various diseases. Our study is 

one of the first to investigate Ikaros in pancreatic cancer, especially as it relates to 

effector and regulatory T cells.  In this study, we provide evidence that loss of Ikaros 

expression occurs in pancreatic TB hosts. We show that this occurs, at least in part, by 

ubiquitin-mediated proteasomal degradation in response to pancreatic cancer factors. 

This protein degradation of Ikaros may be as a result of alterations in known regulators 

of its stability, PP1 and CK2.  Loss of Ikaros expression may contribute to the observed 

imbalance in effector and regulatory T cell percentages, favoring an 

immunosuppressive microenvironment. Therefore, Ikaros may be a T-cell specific 

therapeutic target for maintaining T cell homeostasis in pancreatic cancer patients. 

 

Results 

Reduced Ikaros expression in TB mice 

Ikaros is a critical regulator of lymphocyte development and is characterized as a 

tumor suppressor gene (15). More specifically, loss of Ikaros activity due to genetic or 

functional inactivation leads to the development of leukemias and lymphomas in mice 

and humans (8, 16, 17). However, investigations into the role of Ikaros in solid cancers, 
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especially as it relates to immune cell development, have been limited. We therefore 

wanted to determine whether defects in Ikaros might occur in a pancreatic tumor 

microenvironment. Ikaros protein expression was detected in the peripheral blood, bone 

marrow (data not shown) and spleen of our TB mice. However, its expression was most 

abundant in the spleen, which was used in this study. We first evaluated Ikaros protein 

expression in splenocytes from control and TB mice by using an antibody to the 

conserved C-terminus to detect all possible isoforms expressed. Western blot analyses 

revealed the expression of at least 7 Ikaros isoforms in control splenocytes which, 

based on their molecular weight (MW), appear to correspond to full-length isoforms Ik-1, 

and Ik-2/3 (arrows 1 and 2; Figure 3.1A) and five smaller (<46), DN isoforms (18, 19)  

(arrows 3-7; Figure 3.1A). Expression of these isoforms was downregulated in TB 

splenocytes and accounted for a significant (two-fold) decrease in total Ikaros protein 

expression in TB splenocytes compared to control (Figure 3.1A). Next, we evaluated 

mRNA expression of Ikaros in control and TB mice to determine whether differences in 

Ikaros protein expression were due to changes in its transcript. Using primers that 

detect Ikaros isoforms through conserved regions, we found no significant difference in 

total Ikaros mRNA expression between TB and control splenocytes (Figure 3.1B).  

Observing reduced Ikaros protein expression in TB mice, we then investigated whether 

this downregulation was in response to Panc02 factors (soluble and non-soluble). We 

recapitulated the in vivo tumor microenvironment by co-culturing splenocytes from naïve 

C57BL/6 mice with murine Panc02 cells in vitro. This co-culture resulted in reduced 

Ikaros protein expression in splenocytes as revealed by western blot analysis (Figure 
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3.1C). Thus far, these results suggest that pancreatic cancer factors may downregulate 

Ikaros expression in TB mice.  

 
 

Murine Panc02 cells cause ubiquitin-mediated proteasomal degradation of 

Ikaros in vitro  

Our data proposes that downregulation of Ikaros protein expression in TB 

splenocytes may be due to a posttranslational modification affecting its protein stability. 

Studies have shown that Ikaros protein undergoes ubiquitin-proteasomal degradation 

Figure 3.1. Reduced Ikaros expression in TB mice. A. Western blot analysis of Ikaros 
protein expression in control and TB splenocytes. To control for equal protein loading the 
blot was reprobed with an antibody specific to β-actin. The arrows on the left indicate 
observed Ikaros isoforms. Representative quantification of normalized densitometric 
ratios of western blot data is shown. B. qRT-PCR analysis of Ikaros mRNA expression in 
control and TB mice. C. Western blot analysis of Ikaros protein expression in naïve 
splenocytes co-cultured with Panc02 cells. To control for equal protein loading the blot 
was reprobed with an antibody specific to β-actin. The arrows on the left indicate 
observed Ikaros isoforms.  Representative quantification of normalized densitometric 
ratios of western blot data is shown. Represented is the mean ± S.E.M. of control (n = 3) 
compared to TB (n = 3) mice.**p<0.005 (by two-tailed Student’s t test). 
!
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(14, 20-23). As Ikaros expression is significantly reduced in TB splenocytes, we treated 

naïve splenocytes with the proteasomal inhibitor, MG132, which was used as a 

molecular tool to test whether Ikaros protein undergoes proteasomal degradation. 

Results showed that in the presence of MG132, particularly at 10µM, 20µM and 40µM, 

there was a significant increase in Ikaros protein expression (Figure 3.2A). MG132 

inhibition of the proteasome blocks apoptosis and stabilizes p53 expression (24). We 

therefore evaluated p53 expression to confirm MG132 activity in these experiments 

(Figure 3.2A). Furthermore, we wanted to determine whether the downregulation of 

Ikaros in TB mice was as a result of proteasomal degradation of Ikaros in response to 

Panc02 factors.  Results of western blot analyses of splenocytes co-cultured with 

Panc02 cells showed that 10µM MG132 stabilized Ikaros expression (lane 2 vs. lane 1; 

Figure 3.2B). However, in the presence of Panc02 cells Ikaros protein expression was 

reduced in splenocytes (lane 3 vs. lane 1; Figure 3.2B).  Interestingly, the addition of 

MG132 to the co-culture prevented Panc02-induced downregulation of Ikaros 

expression  (lane 4 vs. lane 3; Figure 3.2B). These data suggest that pancreatic cancer 

factors may cause downregulation of Ikaros via protein degradation by the ubiquitin-

proteasome pathway. 

 

Altered PP1 expression, CK2 activity and Ikaros nuclear staining pattern in 

TB mice 

A balance between CK2 and PP1 is responsible for maintaining Ikaros’ protein 

stability and function. In particular, lack of dephosphorylation by PP1 and 

hyperphosphorylation by CK2 leads to increased degradation of Ikaros (13, 14, 25). 
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Since our data suggests that Ikaros downregulation may be as a result of its protein 

degradation, we investigated the expression of CK2 and PP1 in splenocytes from our 

control and TB mice. We firstly evaluated PP1 expression by western blot analyses 

using an antibody that recognizes PP1 catalytic subunits. Western blot analsyes 

detected two catalytic isoforms in control splenocytes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Murine Panc02 cells cause ubiquitin-mediated proteasomal 
degradation of Ikaros in vitro. A. Western blot analysis of Ikaros and p53 
expression in naïve splenocytes treated with the proteasomal inhibitor, MG132 for 
four hours in vitro. To control for equal protein loading the blot was reprobed with an 
antibody specific to β-actin. Representative quantification of normalized densitometric 
ratios of western blot data is shown. B. Western blot analysis of Ikaros expression in 
naïve splenocytes co-cultured in the absence or presence of Panc02 cells and/or 
MG132. To control for equal protein loading the blot was reprobed with an antibody 
specific to GAPDH. Representative quantification of normalized densitometric ratios 
of western blot data is shown. Represented is the mean ± S.E.M. of three 
independent experiments. *p<0.05, **p<0.005; ***p<0.0001(by two-tailed Student’s t 
test). 
!
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However, the higher MW PP1 catalytic isoform was reduced in TB splenocytes (Figure 

3.3A). Next, we evaluated CK2 by also evlauting the expression of its catalytic subunit. 

We found a reduction in CK2α protein expression in TB splencoytes compared to 

control (Figure 3.3B). We also assayed CK2 activity which revealed a significant 

increase in CK2 activity in TB splenocytes compared to control (Figure 3.3C).  

Phosphorylation/dephosphorylation of Ikaros by CK2 and PP1 also affects its DNA 

binding ability and subcellular localization. The majority of Ikaros localizes at 

pericentromeric heterochromatin (PC-HC) where it functions in regulating gene 

expression (26).  Therefore, having observed defects in PP1 and CK2 pathways, we 

evaluated Ikaros localization using immunofluorescence microscopy. In control 

splenocytes, we observed the characterisitic nuclear, punctate staining pattern of 

Ikaros, indicative of its PC-HC localization (Figure 3.3D). However, in TB splenocytes, 

more diffuse staining of Ikaros was observed (Figure 3.3D).  Overall, we observed 

reduced PP1 expression and increased CK2 activity as well as cytoplasmic subcellular 

localization of Ikaros in TB splenocytes. Therefore, differential expression of these two 

critical proteins may contribute to regulating Ikaros expression in our TB mice.   

 

Altered T cell percentages in TB and TrM mice 

Ikaros has been identified as a regulator of T cell development (8, 27, 28). T 

cells, specifically CD4+ and CD8+ T cells, are key players in tumor protective immunity 

(29, 30). Having observed defects in Ikaros expression, we next evaluated whether T 

cell development is altered in response to murine pancreatic cancer.  Flow cytometry 

results showed that there was a significant decrease in both CD4+ (Figure 3.4A) and  
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Figure 3.3. Altered PP1 expression, CK2 activity and Ikaros nuclear staining 
pattern in TB mice. Western blot analysis of A. PP1 and B. CK2α protein 
expression in control and TB splenocytes. To control for equal protein loading the 
blots were reprobed with an antibody specific to β-actin. Representative 
quantifications of normalized densitometric ratios of each western blot are shown. 
C. Counts per minute (C.P.M.) of CK2 activity in protein lysates from splenocytes 
from control and TB mice as assayed by an in vitro CK2 kinase assay. 
Represented is the mean ± S.E.M. of control (n = 3 compared to TB (n = 3) 
mice).*p<0.05, **p<0.005; (by two-tailed Student’s t test). D. Immunofluorescence 
microscopy showing Ikaros expression and subcellular localization in control and 
TB splenocytes (n=25 cells). Nuclear DNA appears as blue (DAPI), Ikaros as red 
(Ikaros panel) and Ikaros and DAPI combined (Merged panel).  
(Magnification,×240). Representative results from at least three independent 
immunofluorescence microscopy experiments.  
!
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CD8+ (Figure 3.4B) effector T cell percentages in splenocytes from TB compared to 

control mice.  Given the reduction in effector T cell percentages in splenocytes from TB 

mice, we investigated the percentages of immunosuppressive regulatory T cells.  Flow 

cytometry results showed that there was a significant increase in CD4+CD25+ Tregs in 

splenocytes from TB compared to control mice (Figure 3.4C). We previously published 

that CD4+CD25+ Tregs from TB mice suppress antigen-specific CD8+ T cell responses 

in a dose dependent manner, at a greater rate as compared to control Tregs (6). Thus 

far, our results suggest that defects in Ikaros expression may be associated with a loss 

of T cell equilibrium in our pancreatic TB mice. Our next step was to determine whether 

this disruption in effector and regulatory T cell balance occurred in another highly 

translatable, transgenic mouse model of pancreatic cancer. The LSL-KrasG12D/+;LSL-

Trp53R172H/+;Pdx-1-Cre transgenic mouse model (TrM mice) has mutations in Kras and 

p53, leading to spontaneous development of pancreatic cancer (31), that recapitulates 

pancreatic cancer in humans (32). Flow cytometry analyses showed a reduction in 

effector CD4+ (Figure 3.4D) and CD8+ T (Figure 3.4E) cells but an increase in 

regulatory T cells (Figure 3.4F) in splenocytes from TrM mice compared to wild-type 

(WT) littermates. We then evaluated the expression of Ikaros, CK2 and PP1 in these 

TrM mice to delineate their possible involvement in regulating T cell immune 

homeostasis in this model. Western blot analyses revealed a significant reduction in 

overall Ikaros expression in splenocytes of triple mutant mice compared to wild-type 

(WT) mice (Figure 3.4G). However, in the TrM splenocytes, Ikaros DN isoforms were  
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Figure 3.4. Altered T Cell Percentages in TB and TrM mice. Flow cytometry 
analysis of T cell percentages in TB and TrM mice. A. CD4+ T cell, B. CD8+ T cell 
and C. Treg percentages in splenocytes from control and TB mice. D. CD4+ T cell, E. 
CD8+ T cell and F. Treg percentages in splenocytes from wild-type (WT) and TrM 
mice. Western blot analysis of G. Ikaros H. PP1 and I. CK2α protein expression in 
WT and TrM splenocytes. To control for equal protein loading the blot was reprobed 
with an antibody specific to β-actin. The arrows on the left indicate observed Ikaros 
isoforms. Representative quantifications of normalized densitometric ratios of 
western blot data are shown. Represented is the mean ± S.E.M. of control (n = 3 
compared to TB (n = 3) mice).*p<0.05;**p<0.005; ***p<0.0001(by two-tailed 
Student’s t test). 
!
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mainly expressed (Figure 3.4G). There was no significant difference in protein 

expression of PP1 catalytic subunits (Figure 3.4H) but CK2α expression was reduced 

(Figure 3.4I) in TrM compared to WT mice. This implies that Ikaros dysregulation, the 

possible involvement of PP1 and/or CK2, and the resulting imbalance in T cell profiles, 

may have clinical relevance in pancreatic cancer.  

 

Dysregulation of Ikaros, PP1 and CK2 in CD3+ enriched T cells  
 
Thus far, we have observed a loss of Ikaros expression and T cell homeostasis 

in whole splenocytes from TB compared to control mice. Reports show that modulation 

of Ikaros expression in T cells affects their polarization, proliferation and differentiation 

(27, 33). Next, we investigated whether Ikaros expression was specifically altered at the 

T cell level in our animal model and could account for the loss of T cell homeostasis 

observed.  Correlating with results in whole splenocytes, western blot analysis showed 

that Ikaros protein expression was also significantly reduced in enriched CD3+ T cells 

from TB mice compared to control (Figure 3.5A).  The isoforms detected appear to 

correlate with Ik-1 and Ik-2/3, which have previously been reported to be predominantly 

expressed in T lymphocytes (13). We then evaluated whether Ikaros expression in T 

cells is also regulated by ubiquitin-mediated proteasomal degradation. CD3+ T cells 

enriched from naïve splenocytes were treated with increasing concentrations of MG132 

in vitro as previously described. Western blot analyses of Ikaros expression revealed 

that MG132 did in fact significantly increase Ikaros expression in CD3+ T cells at 10 and 

20µM concentrations with MG132 activity evaluated by p53 expression (Figure 3.5B). 

Next, we co-cultured these enriched CD3+ T cells with Panc02 cells in the absence or  
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Figure 3.5. Dysregulation of Ikaros, PP1 and CK2 in CD3+ enriched T cells.  A. 
Western blot analysis of Ikaros  protein expression in control and TB CD3+ T cells. To 
control for equal protein loading the blot was reprobed with an antibody specific to β-
actin. The arrows on the left indicate observed Ikaros isoforms. Representative 
quantification of normalized densitometric ratios of western blot data is shown. B. 
Western blot analysis of Ikaros and p53 expression in naïve CD3+ T cells treated with 
the proteasomal inhibitor, MG132 for four hours in vitro. To control for equal protein 
loading the blot was reprobed with an antibody specific to β-actin. Representative 
quantification of normalized densitometric ratios of western blot data is shown. C. 
Western blot analysis of Ikaros expression in naïve CD3+ T cells co-cultured in the 
absence or presence of Panc02 cells and/or MG132. To control for equal protein 
loading the blot was reprobed with an antibody specific to GAPDH. Western blot 
analysis of D. PP1 and E. CK2α protein expression in control and TB CD3+ T cells. 
To control for equal protein loading the blots were reprobed with an antibody specific 
to β-actin. Representative quantifications of normalized densitometric ratios of 
western blot data are shown. Represented is the mean ± S.E.M. of control (n = 3 
compared to TB (n = 3) mice).*p<0.05, **p<0.005; (by two-tailed Student’s t test). 
!
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presence of MG132. MG132 stabilized Ikaros expression in T cells (lane 2 vs. lane 

1;Figure 3.5C). Panc02 cells caused reduced Ikaros expression in T cells (lane 3 vs. 

lane 1;Figure 3.5C). However, this downregulation was prevented in the presence of 

10µM MG132 (lane 4 vs. lane 3;Figure 3.5C), suggesting that Panc02 factors contribute 

to proteasomal degradation of Ikaros in CD3+ T cells. Our next step was to determine 

the expression of PP1 and CK2, regulators of Ikaros, in these isolated CD3+ T cells. 

Similar to our results in whole splenocytes, there was a reduction in PP1, especially of 

the higher MW catalytic isoform in TB CD3+ T cells compared to control (Figure 3.5D). 

There was also a significant reduction in CK2α expression in TB CD3+ T cells compared 

to control (Figure 3.5E). These data indicate that dysregulation of Ikaros in CD3+ T 

cells, possibly as a result of altered in PP1 and CK2 expression and activity, may 

contribute to loss of T cell homeostasis in pancreatic TB mice. 

 

Discussion 

Ikaros is a critical regulator of lymphocyte development, especially T cells. In 

fact, Ikaros has been proposed to function as a tumor suppressor in hematological 

malignancies (34-36). However, the role of Ikaros in solid cancers has not been fully 

investigated. In this study, we identified the possible involvement of Ikaros in T cell 

homeostasis in pancreatic cancer mouse models. Our results suggest that pancreatic 

cancer (soluble and non-soluble) factors cause a reduction in Ikaros expression in 

splenocytes. We provide evidence that suggests these pancreatic cancer factors cause 

ubiquitin-mediated proteasomal degradation of Ikaros, which may be as a result of 

dysregulation in PP1 and CK2 pathways. Furthermore, we showed that this loss of 
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Ikaros coincides with an imbalance in T cell immune responses resulting in decreased 

percentages of effector CD4+ and CD8+ T cells and increased regulatory T cell 

percentages (Figure 3.6). Our study therefore proposes a putative and novel role for 

Ikaros in regulating T cell homeostasis in pancreatic cancer hosts. 
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Figure 3.6. Proposed Model. Murine pancreatic cancer causes Ikaros 
degradation and alters T Cell Homeostasis. We propose a potential molecular 
mechanism of Ikaros regulation by which under normal conditions, the balance 
(represented by the solid, black bar) in the concerted action of PP1 and CK2 
stabilizes Ikaros protein expression. This results in maintenance of effector 
CD4/CD8+ and regulatory T cell percentages. However, in a pancreatic cancer 
microenvironment, our findings suggest that there is a decrease in PP1 but an 
increase in CK2 activity (represented by broken arrow), which leads to ubiquitin-
mediated protein degradation of Ikaros. This loss of Ikaros expression results in a 
loss of T cell homeostasis marked by a reduction of effector CD4/CD8+ T cell 
percentages and an increase of regulatory T cells. Ikaros may therefore be 
important for regulating T cell immune responses in pancreatic cancer. 
!
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The Ikaros gene is alternatively spliced to generate multiple full-length DNA 

binding and DN isoforms (16).  We observed at least 7 splice variants of Ikaros are 

expressed in control splenocytes, all of which are downregulated in TB mice. TrM LSL-

KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre transgenic mice have mutations in p53 and Kras 

that model the genetic diversity of humans with pancreatic cancer, making it a highly 

translatable model.  In WT littermates for TrM mice, at least 6 isoforms were observed. 

We are in the process of identifying these specific isoforms and comparing them to the 

currently identified isoforms and their variants (19). Ik-1 and Ik-2/3, are reduced in our 

TB and TrM models, which both have defects in T cell immune balance. These isoforms 

are amongst the predominant isoforms generally expressed in T cells (13). Interestingly, 

these isoforms are also reduced in our CD3+ TB T cells and are the main isoforms 

undergoing proteasomal degradation. Therefore, these full-length Ikaros isoforms may 

be critical for maintaining T cell immune balance, while the overexpression of DN 

isoforms may cause an imbalance and needs to be further investigated. In addition, we 

are also investing the alternative splicing mechanisms that may govern Ikaros isoform 

expression in our pancreatic cancer models. Defects in Ikaros expression as well as the 

shift in T cell immune balance in the spontaneous pancreatic cancer mice, provide 

evidence that Ikaros may indeed have clinical relevance in regulating effector and 

regulatory T cell immune responses in pancreatic cancer hosts.  

The reduction in protein but not mRNA expression of Ikaros in TB mice led us to 

believe that Ikaros protein may be regulated posttranslationally. Initial studies showed 

that Ikaros is subject to protein degradation via the ubiquitin-proteasome pathway (14) 

and eliminated the involvement of proteolysis by calpains (20). The ability of MG132 to 
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increase Ikaros expression in both whole and CD3+ T cell enriched splenocytes 

provided evidence that the ubiquitin proteasome pathway may regulate Ikaros 

expression in immune cells in our pancreatic cancer mouse model.  A number of recent 

studies support our findings as they have shown that Ikaros is indeed subject to 

proteasomal degradation (22, 23), especially as it relates to T cells (21). Our study 

further suggests that pancreatic cancer factors may trigger this proteasomal 

degradation of Ikaros. We published that Panc02 cells produce a number of 

inflammatory factors (37) and are investigating the molecular mechanism(s) by which 

inflammatory factors may modulate Ikaros’ expression in our pancreatic cancer models.   

We also aimed to determine the pathway(s) involved in regulating Ikaros 

degradation in our TB mice. The concerted action of CK2 and PP1, controls Ikaros’ 

stability, DNA binding ability and subcellular localization (14). Hyperphosphorylation by 

CK2 induces Ikaros’ degradation while dephosphorylation of Ikaros by PP1 increases its 

stability (14). Having observed that downregulation of Ikaros protein may be as a result 

of ubiquitin-mediated proteasomal degradation, we hypothesized that this mechanism 

may be due to increased CK2 vs. PP1 activity in TB mice. We observe a reduction in 

PP1, specifically of a particular catalytic isoform, which is currently being investigated 

for its possible role in regulating Ikaros expression in TB mice. We also detected a 

reduction in CK2α expression but increased CK2 activity in TB splenocytes.  In our TrM 

model, the lower MW catalytic subunit of PP1 was expressed and there was no 

difference in its expression compared to WT littermate controls. However, CK2α 

expression was also downregulated in these TrM mice but its activity has not yet been 

assayed. We are investigating how CK2 activity is regulated in our models.  We have 
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preliminary evidence that suggest that use of a selective CK2 inhibitor, increases Ikaros 

expression in vitro and in vivo, and restores effector and regulatory T cell balance in TB 

mice compared to control (unpublished data). This data further suggests that CK2 may 

be regulating Ikaros expression and function in our pancreatic cancer model. Currently, 

experiments using specific CK2 and PP1 inhibitors are being performed to confirm the 

roles of these two proteins in regulating Ikaros expression in pancreatic TB mice.    

Defects in PP1 and CK2 can also affect Ikaros’ function in binding DNA and its 

subcellular localization (14). In control splenocytes, Ikaros may be functional as its 

normal nuclear punctate staining was observed, which is characteristic of Ikaros 

localization to PC-HC which is essential for DNA binding and dimerization abilities (38). 

The diffuse, nuclear staining pattern suggests that Ikaros may not be localized to PC-

HC and may therefore be functionally inactive in TB mice. In fact, this phenotype is 

similar to that observed in Ikaros mutants unable to interact with PP1 (14). It is also 

common in leukemic cells from infants with newly diagnosed ALL in which DN isoforms 

are prevalent (39), further supporting our findings.  

We have shown that defects in Ikaros expression appear to limit the normal 

balance of T lymphocytes in our pancreatic cancer models. However, we have not 

specifically identified which T cell subsets mentioned (CD4+, CD8+, regulatory T cells) 

have intrinsic defects in Ikaros. Other CD3+ T cell populations such as T helper (Th) 

cells (Th1, Th2, Th9, Th17), induced regulatory T cells  (iTregs), natural regulatory T 

cells (nTregs), natural killer T (NK/T) cells, and CD8+ regulatory T cells, etc. may also 

be regulated by Ikaros and could potentially be included in our results. We have 

observed defects in some of these T cell populations in our TB mice and are attempting 
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to analyze these populations individually to identify possible defects in Ikaros 

expression, regulation and function. This will also allow us to identify other possible 

mechanisms by which Ikaros may be regulating T cell homeostasis in our model. These 

mechanisms may involve dysregulation of essential transcription factors (40, 41) and 

cytokines (42, 43) as well as alterations in cellular processes such as polarization, 

differentiation, proliferation (27, 33), anergy (44)  and apoptosis (20) as reported in other 

studies. Helios, another Ikaros family member, has been reported to complex with 

Ikaros in T cells and may limit Ikaros function (45). Helios also plays a role in T cell 

activation and proliferation (46) and is involved in regulatory T cell development and 

function (47, 48). We have generated preliminary evidence that shows that Helios 

expression is downregulated in our TB mice (unpublished data) and are currently 

investigating its involvement along with Ikaros. We are also investigating Eos and 

Aiolos, other Ikaros family members, due to loss of homeostasis of other lymphocyte 

populations in this murine pancreatic cancer model (unpublished data). 

This study is one of the firsts to investigate the possible involvement of Ikaros in 

regulating T cell immune homeostasis in pancreatic cancer. Our results show that 

pancreatic cancer factors cause reduced Ikaros expression in splenocytes, which may 

be as a result of Ikaros protein degradation by the ubiquitin/proteasome pathway. We 

also provide evidence that activation of this pathway may involve dysregulation of the 

balance between PP1 phosphatase and CK2 kinase. Furthermore, we show that this 

apparent functional inactivation of Ikaros potentially contributes to T cell imbalance and 

may have clinical relevance as a similar trend was observed in a translatable, 
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pancreatic cancer mouse model. In conclusion, this study highlights the importance of 

Ikaros in regulating T cell immune responses in pancreatic cancer hosts.  
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CHAPTER FOUR 

CK2 INHIBITION INCREASES IKAROS EXPRESSION AND RESTORES EFFECTOR 

AND REGULATORY T CELL IMMUNITY IN MURINE PANCREATIC CANCER 
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Pancreatic Cancer, Ikaros, CK2, Apigenin, T Cells 

 

Abstract 

Pancreatic cancer evades immune destruction by favoring the development of 

regulatory T cells (Tregs) that inhibit effector T cells.  The transcription factor Ikaros is 

critical for lymphocyte development, especially T cells. We have previously shown that 

downregulation of Ikaros occurs as a result of its protein degradation by the ubiquitin-

proteasome system in our Panc02 tumor-bearing (TB) mouse model. Mechanistically, 

we observed a deregulation in the balance between CK2 and PP1, which suggested 

that increased CK2 activity is responsible for the regulating Ikaros’ stability in our model. 

We also showed that this loss of Ikaros expression is associated with a significant 

decrease in CD4+ and CD8+ T cell percentages but increased CD4+CD25+ Tregs in TB 

mice. In this study, we evaluated the effects of the dietary flavonoid apigenin, on Ikaros 

expression and T cell immune responses. Treatment of splenocytes from naïve mice 

with apigenin, stabilized Ikaros expression and prevented Ikaros downregulation in the 
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presence of Panc02 cells, in vitro, similar to the proteasome inhibitor, MG132.  In vivo, 

treatment of TB mice with apigenin (TB-Api) reduced tumor weights and prevented 

splenomegaly. Apigenin treatment also restored protein expression of some Ikaros 

isoforms, which may be attributed to its moderate inhibition of CK2 activity. This partial 

restoration of Ikaros expression was accompanied by a significant increase in CD4+ and 

CD8+ T cell percentages and a reduction in Treg percentages. In addition, apigenin 

treated TB mice were better able to prime allogeneic BALB/c CD8+ T cell responses, 

compared to TB mice. These results provide further evidence that Ikaros is regulated by 

CK2 in our pancreatic cancer model. More importantly, our findings suggest that 

apigenin may be a possible therapeutic agent for stabilizing Ikaros expression and 

function to maintain T cell homeostasis in murine pancreatic cancer. 

 

Introduction 

Pancreatic adenocarcinoma is one of the most aggressive and most lethal solid 

malignancies (1). The pancreatic tumor microenvironment favors the recruitment of 

immunosuppressive cells that dampen anti-tumor immune responses, allowing tumor 

cells to evade immune surveillance and leading to tumor progression (2, 3). 

Understanding the mechanisms by which these anti-tumor immune responses, 

specifically those mediated by T cells, are regulated in pancreatic cancer is therefore 

critical to developing new, targeted treatment options. 

Effector CD4+ and CD8+ T cells both play important roles in the host’s immune 

response to cancer (4). Early studies showed a conventional “helper” role for CD4+ T 

cells by primarily influencing immune responses by regulating CD8+ cytotoxic T 
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lymphocytes (CTLs) (5). The percentages and function of CD8+ T cells are significantly 

decreased in the peripheral blood of pancreatic cancer patients, compared to healthy 

controls (6). One contributing mechanism to this diminished anti-tumor response in 

pancreatic cancer patients is the induction and recruitment of suppressive cells by 

tumor-derived factors (2, 3). In particular, immunosuppresive regulatory T cells (Tregs) 

are a subpopulation of CD4+ T cells that express the forkhead boxP3 (FoxP3) gene (7) 

and function by maintaining peripheral immune tolerance against self-antigens and 

foreign antigens by suppressing CD4+ and CD8+ T cell responses (8).   The 

percentages of Tregs are elevated in pancreatic cancer hosts (9-11). Delineating the 

mechanisms by which this balance in T cells is loss is critical for the generation of 

effective anti-tumor immune responses in pancreatic cancer hosts.  

Alterations in transcription factors that play critical roles in the commitment and 

maintenance of lymphocyte development often promote malignant transformation (12). 

One such example is the Ikaros family of zinc finger transcription factors that includes 

Ikaros, Aiolos, Helios, Eos and Pegasus proteins. These transcription factors regulate 

cell-fate decisions during hematopoiesis and are thus important players in the 

development of immune cells (13). In particular, Ikaros, the founding member is 

particularly important for normal T cell development (14-16). Ikaros is regulated 

posttranscriptionally by alternative splicing, which produces functional and dominant-

negative (DN) isoforms, which can inhibit its activity (17, 18). Ikaros is also regulated by 

posttranslational modifications, which primarily include phosphorylation (19). 

Phosphorylation by protein kinase CK2 and dephosphorylation by protein phosphatase 

1 (PP1) can negatively affect Ikaros’ stability, localization and function (20). More 
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specifically, CK2 phosphorylation of Ikaros impairs its DNA binding ability, regulation of 

cell cycle progression, and its function in T cells, alters its subcellular localization and 

leads to its ubiquitin-mediated proteasomal degradation via phosphorylation in PEST 

regions (20-22). On the contrary, dephosphorylation of Ikaros by PP1 maintains its 

stability and function (20, 21, 23). CK2 is a ubiquitously expressed and highly conserved 

serine/threonine kinase that regulates a number of critical cellular processes, including 

cell proliferation and apoptosis (24-26). CK2 is widely studied in blood and solid 

malignancies (27). Overexpression of its tetrameric subunits and deregulation of its 

activity have been linked to numerous cancers (24). Overexpression of CK2 in mice 

leads to T cell leukemias and lymphomas (28-30). However, limited studies have 

focused on CK2’s involvement in regulating immune responses.   

Apigenin (API) is a natural plant flavonoid and selective CK2 inhibitor that targets 

CK2-dependent signaling pathways. Apigenin has a number of reported biological 

effects including anti-proliferative, anti-oxidant anti-inflammatory and anti-carcinogenic 

properties, which are thought to be integral part of its anti-cancer property (31). 

Recently, there has been increased exploration of the use of apigenin as a 

chemopreventive agent in a number of cancer models (32). More specifically, apigenin 

has been shown to induce cell death and also enhance the anti-proliferative effects of 

chemotherapy agents in human pancreatic cancer cells (33-35).  

We have previously shown that Ikaros undergoes proteasomal degradation, 

which may contribute to altered effector and regulatory T cell development in murine 

pancreatic cancer. Our studies suggested that a shift in the balance between CK2 and 

PP1, favoring CK2 activity may be responsible. Therefore, to further delineate CK2’s 
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involvement in regulating Ikaros expression and thus, T cell responses, we investigated 

the effects of apigenin in our model. We found that apigenin is able to stabilize Ikaros’ 

expression in vitro and in vivo while also restoring the balance between effector 

CD4/CD8+ and regulatory T cells. This correlated with increased immune function as 

indicated by increased proliferation of allogeneic CD8+ T cells in apigenin treated mice 

in a one-way allogeneic mixed leukocyte reaction (MLR). This study highlights the 

importance of CK2 in regulating Ikaros expression and its possible influence on T cell 

immune responses in murine pancreatic cancer. 

 

Results 

 Apigenin prevents Ikaros downregulation in vitro  

We previously showed that MG132, is able to stabilize Ikaros expression in vitro, 

providing evidence that Ikaros undergoes ubiquitin proteasomal degradation. A balance 

between CK2 and PP1 regulates Ikaros stability and function (20, 21, 36). In particular, 

increased CK2 activity is thought to cause Ikaros degradation (21). Therefore, inhibiting 

CK2 should therefore stabilize Ikaros expression and prevent its degradation, similar to 

MG132. We treated naïve splenocytes with the CK2 inhibitor, apigenin, as well as 

MG132, both at 10µM and 20µM, to compare their effects on Ikaros exprression. Both 

apigenin and MG132, stabilized Ikaros expression (Figure 4.1; Lanes 2 and 3 vs. Lane 

1; Lanes 4 and 5 vs. Lane 1) and also displayed a synergistic effect, which shows 

accumulation of ubiquitination ladders (Figure 4.1; Lane 6). In addition, both treatments 

appeared to induce ubiquitination ladders of Ikaros expression and stabilize p53 

expression, a target of the ubiquitin-proteasome pathway (Figure 4.1; Lanes 2 and 3 vs. 
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Lane 1; Lanes 4 and 5 vs. Lane 1). Next, we recapitulated the in vivo pancreatic 

environment in vitro by adding murine Panc02 cells to the culture of naïve splenocytes. 

As previously reported, the addition of murine Panc02 cells causes a reduction, 

although not significant, in Ikaros protein expression (Figure 4.1;Lane 7) and MG132 

treatment prevented this downregulation at both 10µM and 20µM (Figure 3.1;Lanes 8 

and 9 vs. Lane 7) in naïve splenocytes. Interestingly, apigenin treatment also prevented 

Panc02 reduction of  Ikaros protein expression in splenocytes at the same 

concentration as MG132 (Figure 4.1;Lanes 10 and 11 vs. Lane 7). However, the 

synergistic effect of the two drugs were not as apparent in the presence of Panc02 cells 

(Figure 4.1;Lane 12). Overall, these results suggest that apigenin is able to stabilize 

Ikaros and prevent its downregulation in a pancreatic tumor microenvironment. 

Moreover, the similarities to MG132 and their additive effect, also further suggests that 

apigenin may be preventing Ikaros’ proteasomal degradation, possibly via its inhibition 

of CK2. 

 

Apigenin reduces tumor burden in vivo 

Due to the effects of apigenin in vitro, we next determined whether apigenin 

could have similar effects on Ikaros in vivo. Apigenin has been shown to have anti-

tumor effects in a number of tumor models including breast cancer and melanoma and 

(37, 38). We therefore evaluated the effects of apigenin treatment on tumor burden 

using our pancreatic cancer model. Treatment of TB mice with 25 mg/kg apigenin (TB-

Api) caused a significant decrease in tumor weight compared to vehicle-treated TB mice 

(Figure 4.2A).  
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Next, we evaluated whether apigenin treatment may have any toxicity effects in 

vivo by weighing all mice at the end of the study. Results showed that there was no 

Figure 4.1 Apigenin prevents Ikaros downregulation in vitro. Western blot 
analysis of Ikaros in naïve splenocytes co-cultured in the absence or presence of 
Panc02 cells, treated with apigenin (API) and/or MG132 for four hours at 10µM 
and 20µM, in vitro. To control for equal protein loading the blot was reprobed with 
an antibody specific to GAPDH. Representative quantification of normalized 
densitometric ratios of western blot data is shown. Represented is the mean ± 
S.E.M. of three independent experiments. Lanes 1-6 vs. Lane 1; Lane 7 vs. Lane 
1; Lanes 8-12 vs. Lane 7 *p<0.05, **p<0.005; ***p<0.0001(by two-tailed Student’s 
t test). 
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significant difference in the weights of TB-Api mice compared to TB mice at the end of 

the study (Figure 4.2B). We previously published that our TB mice displayed 

splenomegaly, marked by a significant increased in spleen weights (39). We found that 

in vivo apigenin treatment reversed this pancreatic cancer induced splenomegaly and 

caused a significant reduction in spleen weights in TB-Api compared to TB mice (Figure 

4.2C).  

 

Apigenin partially stabilizes Ikaros expression in vivo 

Our studies suggest that increased CK2 may be modulating Ikaros expression in 

our TB mice. Furthermore, since our in vitro data shows that apigenin can stabilize 

Ikaros expression, especially in the presence of murine Panc02 cells, we evaluated the 

effect of apigenin treatment on Ikaros protein expression in an in vivo pancreatic tumor 

microenvironment. Western blot analyses revealed that apigenin partially restored 

Figure 4.2 Apigenin reduces tumor burden in vivo A. Tumor weights of tumor-
bearing (TB) and TB-apigenin treated (TB-Api) mice on the last day of the study. B. 
Spleen weights of control (ctrl), TB and TB-Api mice on the last day of the study. C. 
Body weights of control (ctrl), TB and TB-Api mice on the last day of the study. . 
Represented is the mean ± S.E.M. of three independent experiments. (n=3) *p<0.05, 
(by two-tailed Student’s t test). 
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Ikaros expression in TB-Api mice compared to TB mice (Figure 4.3). More specifically, 

DN Ikaros isoforms, described as less than 46 kDa) (40), were specifically increased in 

TB-Api compared to TB mice (Figure 4.3). 

 

 

Apigenin inhibits CK2 activity in vivo 

We also evaluated apigenin’s effect on CK2 expression using an antibody 

specific to its catalytic alpha subunit by western blot analysis. Splenocytes from TB-Api 

mice showed a slight decrease in the molecular weight of CK2α than seen in TB mice, 

similar to that seen in control splenocytes (Figure 4.4A). To further delineate the effect 

of apigenin on CK2 in our pancreatic TB model, we evaluated CK2 activity and a found 

that apigenin treatment caused a reduction in CK2 activity in TB-Api mice, compared to 

Figure 4.3 Apigenin partially stabilizes Ikaros expression in vivo. A. Western 
blot analysis of Ikaros protein expression in splenocytes from control, TB and TB-Api 
mice. To control for equal protein loading, the blot was reprobed with an antibody 
specific to β-actin. Lines represent cropped images from the same western blot. 
Representative quantification of normalized densitometric ratios of western blot data 
is shown. Represented is the mean ± S.E.M. of three independent experiments. 
(n=3) *p<0.05, (by two-tailed Student’s t test). 
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TB. However, this inhibition was not significant (Figure 4.4B). We also evaluated PP1 

expression and saw no difference in the expression of PP1 isoforms expressed in TB-

Api mice compared to TB mice, while a higher MW isoform is also observed in control 

mice (Figure 4.4C). These data strongly suggest that apigenin is able to stabilize Ikaros 

expression in vivo, which may depend on its ability to inhibit CK2 activity. 

 

Apigenin partially restores T cell homeostasis and immune responses in 

vivo 

  Next, we evaluated whether apigenin’s restoration of Ikaros expression had any 

effect in the previously observed shift in T cell numbers in TB mice.  TB-Api mice had 

significantly increased CD4+ (Figure 4.5A) and CD8+ T cell percentages (Figure 4.5B) 

but reduced Treg percentages compared to TB mice (Figure 4.5C). These results 

suggest that Ikaros expression may in fact influence T cell development in our 

pancreatic cancer model, in response to CK2 regulation. Next, we determined whether 

apigenin could influence immune responses in our TB mice. We performed a one-way 

allogeneic mixed leukocyte reaction (MLR) in which splenocytes from control, TB and 

TB-Api mice were used as stimulators to CFSE-labeled BALB/c responders. As 

expected, TB whole splenocytes were deficient in their ability to prime allogeneic CD8+ 

T cell immune responses compared to control splenocytes (Figure 4.5D). In contrast, 

TB-Api whole splenocytes restored this ability to prime allogeneic responses compared 

to TB splenocytes (Figure 4.5D). Having observed that TB-Api mice may could elicit 

enhanced immune responses, we then evaluated IFN-γ production of CD8+ T cells from  
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these mice. Activated CD8+ T cells produce IFN-γ, which is critical to their effector 

function in eliminating tumor cells (41). Intracellular staining and flow cytometry 

analyses revealed that there were defects in CD8+ T cell IFN-γ production in TB mice, 

which was significantly enhanced with apigenin treatment (Figure 4.5E). These findings 

suggest a correlation between Ikaros expression, T cell development and immune 

Figure 4.4 Apigenin inhibits CK2 activity in vivo. A. Western blot analysis of  
CK2α protein expression in control, TB and TB-API splenocytes. B. Counts per 
minute (C.P.M.) of CK2 activity in protein lysates from splenocytes from control, 
TB and TB-API mice as assayed by an in vitro CK2 kinase assay. Representative 
of three independent experiments. Represented is the mean ± S.E.M. of three 
independent experiments. (n=3) *p<0.05 (by two-tailed Student’s t test). C. 
Western blot analysis of PP1 catalytic protein expression in control, TB and TB-
API splenocytes. A. and C. Representative quantification of normalized 
densitometric ratios of western blot data is shown.  To control for equal protein 
loading, the blots were reprobed with an antibody specific to β-actin. 
Representative of three independent experiments. Represented is the mean ± 
S.E.M. of three independent experiments. (n=3) *p<0.05, ***p<0.0001 (by two-
tailed Student’s t test). 
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responses in a pancreatic tumor microenvironment and points to the involvement of 

CK2 is regulating this mechanism. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Apigenin partially restores T cell homeostasis and immune 
responses in vivo  .Flow cytometry analysis of A. CD4+ T cell  B. CD8+ T cell and 
C. CD4+CD25+ Treg percentages in splenocytes from control TB and TB-Api 
mice. D. Allogeneic CD8+ T cell proliferation responses of CFSE-labeled BALB/c 
splenocytes (responders) in response to control, TB and TB-API splenocytes 
(stimulators) in a one-way mixed-leukocyte reaction (MLR), as analyzed by flow 
cytometry analysis. E. Flow cytometry analysis of IFN-γ production of CD8+ T 
cells in splenocytes from control, TB and TB-Api mice. Represented is the mean ± 
S.E.M. of two independent experiments. (n=3) *p<0.05, .**p<0.005; 
***p<0.0001(by two-tailed Student’s t test).  
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Discussion 

Although widely studied in hematological malignancies (13), the role of Ikaros in 

solid cancers has not been fully investigated. We have previously identified the possible 

involvement of Ikaros in maintaining effector and regulatory T cell homeostasis in a 

preclinical pancreatic cancer model. Our data suggested that loss of Ikaros was as a 

result of its ubiquitin-mediated proteasomal degradation in response to increased CK2 

activity versus PP1. In the current study, we make use of a selective CK2 inhibitor, 

apigenin, to further delineate the mechanism by which Ikaros is regulated and to provide 

functional evidence for its involvement in modulating T cell anti tumor immune 

responses. In vitro, apigenin stabilized Ikaros expression in naïve splenocytes and 

prevented its downregulation in the presence of murine Panc02 cells, similar to MG132 

treatment. In vivo, apigenin treatment of TB mice reduced tumor burden, reduced CK2 

activity and restored expression of some Ikaros isoforms. This coincided with increased 

effector CD4/CD8+ T cell numbers while decreasing Treg numbers in TB-API compared 

to TB mice. Apigenin treatment of TB mice also increased CD8+ T cell proliferation of 

allogeneic splenocytes in a one-way MLR. Our study sheds insight into Ikaros’ 

regulation of T cell immunity in pancreatic cancer and defines one possible mechanism 

by which it is regulated. Overall, these results further suggest that pharmacological CK2 

inhibition restores Ikaros expression and can influence T cell immune responses in 

murine pancreatic cancer. 

 Phosphorylation of Ikaros by CK2 induces Ikaros degradation while 

dephosphorylation by PP1 maintains its stability (20, 21, 36).  In vitro, we found that 

apigenin appeared to mimic the effects of MG132 by stabilizing Ikaros expression, 
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causing the accumulation of its ubiquitination ladders. These data suggests that 

apigenin may be similarly preventing ubiquitin-proteasomal degradation of Ikaros via its 

ability to inhibit CK2 activity. The combined effects of MG132 and apigenin further 

provide evidence for this mechanism. As a result, our current working hypothesis it that 

apigenin may be inhibiting the upstream effector of the pathway, CK2 and its ability to 

hyperphosphorylate Ikaros leading to its ubiquitination and degradation. On the 

contrary, we propose that MG132 works downstream of this pathway by inhibiting the 

proteasome. Ultimately, both inhibitors would lead to stability of Ikaros expression, and 

thus its function in regulating T cell homeostasis (Figure 4.6).  

Alternatively, apigenin has also been reported to regulate proteasomal 

degradation. More specifically, apigenin has been shown to potentially inhibit the 

chymotrypsin-like activity of the proteasome (37), similar to MG132 (42, 43). It is 

therefore possible that apigenin may stabilize Ikaros expression by inhibiting both CK2 

and/or proteasomal activity, which needs to be further investigated. Furthermore, 

clinically available proteasomal inhibitors exhibit some toxic effects (44), highlighting the 

need for safer alternatives such as natural, non-toxic compounds like apigenin.  

In vivo, apigenin treatment significantly reduced tumor weights of TB-API 

compared to TB mice. These findings suggest that apigenin may have anti-tumor 

properties in murine pancreatic cancer. However, apigenin treatment could have been 

more effective in reducing tumor burden and tumor size. This may be attributed to the 

frequency and dosage of apigenin administered, as although CK2 activity was inhibited 

by at least half, it was not significant (p=0.053). In depth pharmacokinetics and dose-

dependent studies need to be done to determine a more effective dosage of apigenin  
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treatment for our pancreatic TB mice. Western blot analyses of CK2α expression 

showed an increase in expression in splenocytes from TB-API compared to TB mice. 

However, this was accompanied by a reduction in the MW of the observed band, similar 

to that of control mice. This suggests that apigenin treatment may be inhibiting a 

Figure 4.6 Proposed Model. A representation of Ikaros’ regulation by CK2 
and PP1. We have not delineated PP1’s role but hypothesize that PP1 
dephosphorylates Ikaros maintaining its protein stability. However, we propose 
that CK2 hyperphosphorylates Ikaros, which facilitates its polyubiquitination and 
eventual protein degradation by the ubiquitin-proteasome system. We propose 
that apigenin inhibits CK2 activity, stabilizing Ikaros expression and resulting in T 
cell (effector and Treg) homeostasis. We also propose that MG132 acts 
downstream by directly inhibiting the activity of the ubiquitin-proteasome system, 
preventing proteasomal degradation of Ikaros and thereby stabilizing its 
expression and maintaining T ell homeostasis. 
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posttranslational modification event of CK2. Phosphorylation of CK2 by kinases 

increases its activity (45, 46). Therefore, future experiments will be conducted to 

evaluate whether kinases such as ERK (45), and Cdk1/cycliB1 (47, 48) may be 

responsible for modulating CK2 activity in our pancreatic TB model. 

Apigenin treatment appeared to primarily increase expression of DN Ikaros 

isoforms in vivo. Typically, the overexpression of DN isoforms is said to inhibit the 

activity of Ikaros and is associated with T cell malignancies (49). However, since the 

increase in expression of these isoforms conferred a return to T cell homeostasis and 

immune function, they may be of importance in regulating immune cells in our 

pancreatic cancer mice. Confirmation of these isoforms and further experiments to 

understand their role in immune responses and pancreatic tumor progression are 

therefore needed. It is possible that an increased dosage of apigenin and/or more 

frequent treatments, may lead to a significant decrease in tumor growth, CK2 activity 

and thus stability of more or all Ikaros isoforms as well as T cell percentages and 

function. 

Apigenin treatment significantly increased CD4+ and CD8+ T cells but decreased 

Tregs percentages. Our results showed functional evidence that apigenin modulates 

immune responses in our TB mice since apigenin treatment increased IFN-γ production 

of CD8+ T cells. This is an indication of CD8+ T cell activity and cytotoxic function (50, 

51). Apigenin also significantly increased the ability of antigen-presenting cells (APCs) 

to prime allogeneic CD8+ T cell immune responses. In our one-way MLR, allogeneic 

BALB/c CD8+ T cell responses are stimulated by APCs, of control, TB and TB-API mice. 

Dendritic cells (DC) are the most potent APCs. Their function is often evaluated by their 
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ability to induce proliferation of allogeneic T cells in MLR assays (52). Therefore, the 

ability of TB-API splenocytes to effectively stimulate allogeneic CD8+ T cell proliferation 

may be as a result of apigenin’s effects on DC function, which has previously been 

reported (53). Apigenin’s effects on DC function may be as a result of its reduction of 

Treg percentages, which can inhibit DC function and T cell immune responses (8). 

However, these Treg percentages were not fully restored to those of control mice, which 

may also explain why allogeneic CD8+ T cell proliferation was fully not restored to 

control levels. In addition, we have previously published that other immunosuppressive 

cells such as myeloid derived suppressor cells (MDSC) are expanded in our TB mice 

(39). MDSC are immature macrophages, dendritic cells and granulocytes (54). Apigenin 

reduction in MDSC percentages may be as a result of maturation of these immature 

cells, producing mature dendritic cells and other APCs, which could also account for 

increased allogeneic immune responses. Our unpublished findings suggest that 

apigenin reduces MDSC percentages, which may also account for the increased 

proliferation of allogeneic T cell proliferation in TB-Api mice MLR assay. Overall, our 

results with apigenin provide evidence that Ikaros may be especially involved in 

regulating T cell immune responses in our TB model.  

 In conclusion, this study highlights the importance of CK2 in regulating Ikaros 

expression and T cell immune responses in a solid pancreatic microenvironment. Our 

results suggest that the natural flavonoid, apigenin, may be therapeutically beneficial in 

stabilizing Ikaros expression, thus restoring T cell homeostasis and enhancing anti-

tumor immune responses, which may lead to better treatment options for pancreatic 

cancer. 
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CHAPTER FIVE 

DISCUSSION 

 

Overview 

 Pancreatic cancer is one of the most lethal cancers, which is mainly attributed to 

its resistance to conventional treatment options and late stage diagnosis (1). Currently, 

research is focused on developing immunological approaches to treat pancreatic 

cancer. However, pancreatic cancer’s induction of a highly immunosuppressive 

microenvironment is the main hurdle that is limiting treatment success in patients. It is 

therefore critical to understand the molecular mechanisms that govern suppression of 

anti-tumor immunity in pancreatic cancer hosts (1). In particular, the ratio and function of 

effector CD4+ and CD8+ T cells and suppressor Tregs is skewed to favor 

immunosuppression (2, 3). Therefore, it is especially important to understand how these 

T cells, which are central to the generation of effective anti-tumor immunity, are 

regulated in pancreatic cancer hosts. As a result, the outcome of this study may lead to 

the development of T-cell specific therapies to treat pancreatic cancer. 

The Ikaros family of transcription factors is regulators of hematopoiesis and is 

essential for the development of a functional immune system (4). However, these 

transcription factors have mainly been extensively studied in hematological 

malignancies (5, 6).  Ikaros, the founding and most characterized family member, acts a 
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tumor suppressor in T cells (7). Ikaros’ role in regulating T cells in solid tumors has not 

been investigated. Ikaros regulates important genes for T cell differentiation and 

development (8-10), activation and proliferation (8, 11) and cell cycle progression (12). 

Thus, loss of Ikaros, due to genetic defects or functional inactivation, leads to T-cell 

leukemogenesis (13, 14). Ikaros’ function is regulated by posttranslational modifications, 

primarily phosphorylation. CK2 is mainly responsible for phosphorylation of Ikaros 

thereby influencing a multitude of its functions, including its DNA binding ability and 

pericentromeric localization (15-18). These studies suggest that CK2-phosphorylation 

inactivates Ikaros function, especially in T cells (16, 18). Furthermore, CK2 

phosphorylation of Ikaros in PEST regions, leads to its increased degradation by the 

ubiquitin-proteasome pathway, reducing Ikaros protein levels in cells (15). On the 

contrary, PP1 dephosphorylation maintains Ikaros function and protein stability (15). 

Therefore, tight regulation of these two pathways is critical for sustaining Ikaros activity 

and function in T cell differentiation and development (17). In this dissertation, we 

discuss the involvement of Ikaros in maintaining effector and regulatory T cell 

homeostasis and immune responses. We also identify a possible mechanism governing 

Ikaros’ regulation by CK2 and PP1 in pancreatic cancer models. 

 

Discussion of Data, Limitations and Future Studies 

Our in vitro results suggest that factors produced by Panc02 cells contribute to 

the observed downregulation of Ikaros protein expression in splenocytes.  Our data 

also shows that this downregulation is at least due, in part, to Ikaros undergoing 

ubiquitin-proteasomal degradation. This was deduced by the use of the proteasomal 
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inhibitor MG132. Increased Ikaros expression, in vitro and in vivo, using the CK2 

inhibitor apigenin and the observed increase in CK2 activity in TB splenocytes, suggest 

that CK2 may be responsible for this mechanism. Therefore, our results provide 

evidence that tumor-derived factors (TDF) produced by Panc02 cells may trigger CK2-

dependent proteasomal degradation of Ikaros in our pancreatic TB model. We 

previously published that murine Panc02 cells produce a number of TDF including IL-6, 

IL-10 and MCP-1 (19).  Some of these inflammatory factors, especially IL-6 and IL-10, 

have been reported to stimulate CK2 activity (20, 21). It is therefore possible that these 

and other TDF produced by Panc02 cells, may regulate CK2 activity in our pancreatic 

TB model. Future studies using cytokine and chemokine microarrays and qPCR will be 

used to further characterize the inflammatory factors produced in TDF. The effects of 

identified factors on CK2 activity will also be assessed using specific blocking peptides.  

Litchfield et al (1991) identified that CK2 phosphorylation regulates its activity. 

Litchfield et al (1999) also found that changes in CK2 activity may be independent of 

changes in its amount (22). This may explain the shift in molecular weight observed in 

our TB splenocytes. This observation suggests that CK2 may be phosphorylated and 

its activity increased, despite a reduction in its expression. Mass spectrometry 

techniques will allow us to identify possible CK2 phosphorylation sites. Extracellular 

signal-regulated kinase (ERK) (23) and cyclin-dependent kinase (Cdk1/cyclin B1) (24) 

have both been shown to phosphorylate CK2 and will be investigated amongst other 

kinases. 

As mentioned previously, a balance between CK2 and PP1 is needed to maintain 

Ikaros expression and function, and thus normal lymphocyte development (17). Our 
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results provide evidence for the involvement of CK2 in regulating Ikaros expression, 

based on our data with apigenin. Similar studies using apigenin in the TrM model, 

which also displayed defects in Ikaros and CK2, are needed to provide further clinical 

evidence for the involvement of CK2 in regulating Ikaros expression in pancreatic 

cancer. In addition, apigenin is a selective CK2 inhibitor that can inhibit several other 

kinases (Table 1.1). Therefore, our observed results could be as a result of apigenin’s 

inhibition of CK2 and/or other potential kinases. Future experiments in both our TB and 

TrM models using DRB, a very specific and potent CK2 inhibitor (25) (Table 1.1), will 

allow us to further delineate CK2’s involvement in regulating Ikaros expression, and 

function, in pancreatic cancer. The identification of other potential kinases that can 

phosphorylate Ikaros in sites located within its PEST regions could also help to 

highlight other kinases that may regulate Ikaros in our pancreatic cancer models. 

On the contrary, analyses of PP1 suggested that its activity might be reduced in 

TB mice. However, we have not confirmed this by assaying PP1’s activity. We did, 

however, detect two PP1 catalytic (PP1c) isoforms in control mice, one of which was 

absent in TB and TB-Api mice. Based on previous studies, these isoforms may 

correspond to PP1α and PP1β/δ, isoforms, which are highly expressed in mouse 

spleens (26). However, use of specific antibodies to each isoform is necessary to 

confirm their identities. The absence of the higher molecular weight PP1c isoform in 

whole splenocytes and CD3+ T cells from TB mice, suggests that this isoform may be 

important in maintaining Ikaros expression and T cell homeostasis. However, our 

results in the TrM model did not reflect the differential expression of these PP1 

isoforms observed in TB mice. Further studies using PP1 specific inhibitors, such as 
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PP1 inhibitor-2 (15), will help to determine if PP1 is essential in regulating Ikaros 

expression and function in our pancreatic cancer models. At this point, the 

mechanisms that regulate PP1 expression in our model are unknown to us. It is 

possible that alterations in alternative splicing machinery are responsible for the 

differential expression of PP1c isoforms observed. In addition, degradation of PP1 

isoforms, specifically PP1δ (27), has been reported and may account for differences in 

PP1 isoforms observed at the protein level. 

The observed pattern of multiple Ikaros products in mouse splenocytes, 

representing DNA and non-DNA binding isoforms, is consistent with previous studies 

(28). Downregulation in Ikaros isoform expression was observed in splenocytes of both 

our heterotopic (TB) and mutation-induced (TrM) models of pancreatic cancer. 

Pancreatic cancer development in the TrM model is spontaneously induced by 

mutations in Kras and p53, which occur in humans with pancreatic cancer (29). 

Therefore, downregulation of Ikaros isoforms in this TrM model may provide clinical 

relevance for Ikaros’ role in pancreatic cancer. We were unable to evaluate Ikaros 

expression in the bone marrow and peripheral blood of our mice as Ikaros was lowly 

expressed in these tissues. Methods to increase leukocyte yields from these organs and 

possibly immunoprecipitating Ikaros, may allow us to evaluate whether Ikaros 

expression is also altered in these systemic regions. Analyses of Ikaros expression in 

lymphoid tissues of pancreatic cancer patients will also provide translational evidence of 

its involvement in pancreatic cancer progression. 

 Furthermore, in both TB and TrM models, isoforms corresponding to full-length 

Ikaros were primarily reduced while DN isoforms were primarily expressed. Since full-
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length Ikaros are generally functional and overexpression of DN isoforms inhibits the 

function of full-length (30), our data suggests that Ikaros may be functionally inactive in 

these pancreatic cancer models. Immunofluorescence microscopy data showing altered 

punctate staining of Ikaros in TB splenocytes also suggests that Ikaros function may be 

disrupted as functional Ikaros binds to DNA in pericentromeric heterochromatin (PC-

HC), creating this distinct staining pattern. Mutations in Ikaros that prevent its 

dephosphorylation by PP1, inhibit Ikaros’ targeting to PC-HC and its ability to bind to 

upstream regulatory elements in its target genes (15). This suggests that the observed 

disruption in punctate staining in TB mice may be due to altered subcellular localization 

to PC-HC as a result of lack of dephosphorylation by PP1. Testing the DNA binding 

ability of Ikaros between control and TB mice is necessary to confirm its activity. In 

addition, future experiments using protein sequencing are needed to confirm the identity 

of isoforms observed in TB and TrM models and their possible interactions. This may 

allow for the identification of any potential novel isoforms and may also provide further 

insight into specific isoforms that may be critical to T cell regulation.  

Our results indicate that Ikaros is undergoing ubiquitin-mediated proteasomal 

degradation, which may be a result of a loss in the balance between CK2 and PP1 

activity. We are currently performing in vivo time-course experiments to determine how 

Ikaros expression is regulated in response to pancreatic tumor progression using our 

TB mice. These experiments will also us to determine whether increased tumor burden 

can affect Ikaros’ phosphorylation, ubiquitination and degradation, over time. We will 

also be able to determine how CK2 and PP1 activity correlate with these findings. Co-

immunoprecipitation assays and immunofluorescence microscopy experiments will 
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provide insight into Ikaros localization and interactions with CK2/PP1 in these time-

course experiments. Comparative experiments using apigenin or DRB will determine 

whether CK2 inhibition modulates Ikaros’ phosphorylation, ubiquitination, localization 

and degradation in TB-API mice compared to TB mice. In addition, ongoing experiments 

are being conducted to evaluate the effects of MG132 on Ikaros expression, T cell 

responses and tumor regression, in vivo.  

Expression of some Ikaros isoforms was increased by apigenin treatment of TB 

mice in vivo. This may be attributed to moderate inhibition of CK2 activity. Therefore, 

dose-dependent studies using apigenin, modifications in the route of administration and 

increased study time may provide more significant results. Apigenin treatment also 

showed immunological benefits as it significantly increased effector CD4+ and CD8+ T 

cells, while reducing Tregs percentages. Apigenin also increased allogeneic CD8+ T cell 

immune responses and restored IFN-γ production of CD8+ T cells from TB-Api mice. 

These results suggest that apigenin’s regulation of CK2, and possibly Ikaros, may result 

in favorable anti-tumor immune responses in our TB mice. However, both the T cells 

percentages and allogeneic CD8+ T cell proliferative responses were not restored to 

those of control mice, which may again be a reflection of the efficacy of the dose of 

apigenin administered in inhibiting CK2 activity.  

We also observed T-cell specific defects in Ikaros expression in our pancreatic 

TB mice. Ikaros protein expression was significantly reduced in CD3+ T cells isolated 

from TB mice. More interestingly, two isoforms that may correlate with full-length Ikaros 

1 and 2 were predominantly expressed in isolated T cells and correlates with findings 

in other studies (28, 31, 32). Both of these isoforms were reduced in TB CD3+ T cells 
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(all T cells), which indicates that Ikaros downregulation may be T-cell specific. More 

interestingly, the upper molecular weight band of PP1c was also absent in TB CD3+ T 

cells. CK2α expression was also downregulated in TB CD3+ T but its activity has not 

been evaluated as yet. Confirmation of CK2 and PP1 activity as well as microscopy 

studies to determine whether Ikaros localization and interactions are altered in TB 

CD3+ T cells, are needed to further delineate Ikaros’ regulation in T cells.  

The reduction in Ikaros protein expression in T cells and altered T cell numbers 

in both TB and TrM mice, suggests that Ikaros may be affecting the differentiation 

and/or development of T cells in these pancreatic cancer models. However, these 

mechanisms are currently unknown. It is possible that Ikaros may be modulating the 

development of these T cells via its regulation of critical T cell genes. Ikaros has been 

shown to positively regulate CD8α gene expression (9) and Ikaros deficient mice 

display reduced CD8+ T cell numbers (33). Ikaros has also been shown to upregulate 

the transcription of the Cd4 gene (34). Ikaros also regulates T cell production of 

cytokines, including IFNγ (35), whose production was increased in CD8+ T cells from 

TB-Api mice. Deregulation of these important genes, as a result of reduced Ikaros 

expression, may explain the reduction in effector CD4+T and CD8+ T cells and their 

immune responses, observed in our pancreatic cancer models. As is relates to Tregs, 

Ikaros -/- CD4+ T cells display increased numbers of CD25+FoxP3+ T cells (36). These 

findings suggest that Ikaros deficiency results in increased Treg numbers, which 

coincide with our results. The FoxP3 transcription factor is essential for Treg 

development and function (37).  We have recently identified potential Ikaros binding 

sites in the FoxP3 promoter using the transcription factor binding site prediction 
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program PROMO (ALGGEN) (38). It is therefore possible that Ikaros may negatively 

regulate the transcription of the FoxP3 gene, thereby influencing Treg development 

and function.  

Ikaros also regulates Src homology-2 domain-containing inositol 5-phosphatase 

1 (SHIP-1) (39). SHIP-1 is important for lymphocyte development (40, 41), especially T 

cells (42, 43). We previously published that defects in SHIP-1 expression and its 

signaling pathways occur in our TB model (19). The relationship between SHIP-1 and 

Ikaros, and their regulation and involvement in T cell development are currently being 

investigated in our pancreatic cancer models.  Ikaros also regulates the expression of 

Notch target genes (44-46). Notch signaling is critical for T cell development (47). It is 

also proposed that Ikaros and Notch play a cooperative role in T-cell malignancies 

(44). As Notch signaling also plays a role in pancreatic cancer tumorigenesis (48), 

future studies will also investigate the possible interplay between Notch and Ikaros in 

regulating T cell responses in murine pancreatic cancer. Helios, another Ikaros family 

member, complexes with Ikaros and is considered important for regulating Ikaros 

function in T cells (49). However, there are conflicting reports on the importance of 

Helios in T cell development and function (50-52). It would be interesting to determine 

whether Helios is involved in Ikaros’ regulation of T cells in our study. It would also be 

of interest to determine whether Helios or other Ikaros family members compensate for 

defects in Ikaros expression and function in T cells.  

  Ikaros has also been shown to regulate apoptosis, during which it undergoes 

proteasomal degradation in the early stages (53). More specifically, Ikaros regulates the 

expression of BCL-2 family proteins (54, 55). Our previous study showed that anti-
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apoptotic pathways were active in our TB mice (19). Regulation of apoptosis induction 

may be another potential mechanism by which Ikaros is regulating T cell percentages in 

our pancreatic cancer mice. Ikaros also plays an essential role in cell cycle progression. 

More so, phosphorylation of Ikaros by CK2 influences its ability to regulate G1/S 

transition (32). It was also reported that Ikaros phosphorylation increased in response to 

T cell activation, but its expression decreased over time (32), which could be explained 

by the fact that hyperphosphorylation of Ikaros by CK2 leads to its ubiquitination and 

ultimately its degradation (15). This would also explain our results and further implies 

that the reduction of Ikaros in T cells is a result of CK2-mediatedproteasomal of Ikaros. 

This reduction in Ikaros expression could therefore influence effector and Treg 

proliferation via Ikaros’ effect on the cell cycle.   

We have yet to purify CD4+, CD8+ and CD25 (Tregs) T cells from control, TB and 

TB-Api mice to evaluate Ikaros expression in these T cell populations. This would allow 

us to determine which of these T cells have intrinsic defects in Ikaros expression and 

may further allow us to identify Ikaros-specific target genes and/or cellular processes, 

that may contribute to their altered percentages and function in a pancreatic tumor 

microenvironment. We also need to test the function of these T cells to understand how 

Ikaros influences their immune responses. We are currently evaluating granzyme B and 

perforin production of CD4+ T cells, CD8+ T cells and Tregs (56, 57). We also plan to 

evaluate CD4+ T activation of CD8+ T cells, Treg suppression of antigen-specific 

immune responses and CD8+ T cell activity from pancreatic cancer models. 
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Considering CK2 Inhibitors as Therapeutic Agents for Pancreatic Cancer 

This study highlights the possible therapeutic benefit of targeting upstream 

regulators of Ikaros, such as CK2, to contribute to the generation of effective anti-tumor 

immune responses in pancreatic cancer. The elucidation of the molecular 

mechanism(s) by which Ikaros is regulated highlights the involvement of CK2 in 

maintaining Ikaros expression, and possibly function, in T cell immunity, in our 

pancreatic TB mice. Compared to Ikaros, CK2 has been well-investigated as an 

attractive target for cancer drug discovery (58). CK2 regulates a vast number of cellular 

processes, playing a critical role in several physiological and pathological outcomes 

(59). More importantly, due to its tetrameric structure and ATP-binding site, CK2 is 

considerable a druggable target (60). More recently, CK2 inhibitors have been reported 

to enhance Ikaros’ tumor suppressor activity in hematological malignancies (61). In 

addition, CK2 inhibitors, especially natural compounds such as apigenin, have 

therapeutic benefits in inducing apoptosis of pancreatic cancer cells (62, 63). CK2 

inhibition also enhances chemosensitivity to gemcitabine in human pancreatic cancer 

cells (64). Our study focuses on the role of CK2 inhibition on Ikaros expression and 

function in murine immune cells, specifically T cells. Therefore, the combined effects of 

CK2 inhibition, possibly causing both tumor destruction and enhancing T cell function 

by targeting Ikaros, suggests that CK2 may indeed be an attractive target for treating 

pancreatic cancer.  
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Significance of this Study 

Pancreatic cancer is resistant to a number of therapeutic treatments and there is 

dire need for the development of new treatment options. Immunotherapy is a promising 

approach to treating pancreatic cancer (65). However, defects in generating effective 

anti-tumor immune responses to treatment options are a substantial hurdle in 

successfully combating pancreatic cancer (1, 66). This is attributed to decreased T cell 

immunity, mainly due to the persistent immunosuppressive environment. This 

immunosuppression is characterized by the presence of immunoregulatory cells such 

as Tregs (2), which inhibit effector CD4+and CD8+ T cell proliferation and function (67). 

Therefore, understanding the mechanisms that can regulate T cell balance to favor the 

induction of anti-tumor immunity may prove beneficial in developing novel therapeutic 

targets to treat pancreatic cancer. This study is especially significant because it 

highlights the novel and potential role of Ikaros in regulating immune T cell balance in 

pancreatic cancer. It also proposes proteasomal degradation as one molecular 

mechanism by which Ikaros is regulated in murine pancreatic cancer. More importantly, 

this study provides evidence that CK2 inhibition may be therapeutically beneficial in 

maintaining Ikaros expression and function, and restoring T cell immune homeostasis in 

pancreatic cancer.  
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